1. Alice and Bob are painting a house. If Alice and Bob do not take any breaks, they will finish painting the house in 20 hours. If, however, Bob stops painting once the house is half-finished, then the house takes 30 hours to finish. Given that Alice and Bob paint at a constant rate, compute how many hours it will take for Bob to paint the entire house if he does it by himself.
Answer: 40
Solution: In 10 hours, Alice and Bob paint half the house. Therefore, Alice can paint half the house in 20 hours. This means Alice painted a quarter of the house in 10 hours, which means Bob paints a quarter of the house in 10 hours, so Bob takes 40 hours to paint the entire house.
2. Compute $9^{6}+6 \cdot 9^{5}+15 \cdot 9^{4}+20 \cdot 9^{3}+15 \cdot 9^{2}+6 \cdot 9$.

Answer: 999999

Solution: From the Binomial Theorem, this is just $(9+1)^{6}-1=999999$.
3. Let x_{1} and x_{2} be the roots of $x^{2}-x-2014$, with $x_{1}<x_{2}$. Let x_{3} and x_{4} be the roots of $x^{2}-2 x-2014$, with $x_{3}<x_{4}$. Compute $\left(x_{4}-x_{2}\right)+\left(x_{3}-x_{1}\right)$.
Answer: 1
Solution: Note that $x_{3}+x_{4}=2$ and $x_{1}+x_{2}=1$, giving an answer of 1 .
4. For any 4 -tuple $\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ where each entry is either 0 or 1 , call it quadratically satisfiable if there exist real numbers x_{1}, \ldots, x_{4} such that $x_{1} x_{4}^{2}+x_{2} x_{4}+x_{3}=0$ and for each $i=1, \ldots, 4, x_{i}$ is positive if $a_{i}=1$ and negative if $a_{i}=0$. Find the number of quadratically satisfiable 4 -tuples.
Answer: 12
Solution: First, we may assume $a_{1}=1$ without loss of generality and multiply our answer by 2 at the end, since $a x^{2}+b x+c=0 \Leftrightarrow-a x^{2}-b x-c=0$. We can furthermore assume $x_{1}=1$, since we can always divide the whole equation by x_{1} (since $x_{1}>0$).
Hence, we now consider equations of the form $x_{4}^{2}+b x_{4}+c=0$ in which b and c are constrained to be either positive or negative. This yields four cases:

Case 1: If b and c are both positive, the two roots have positive product but negative sum, so they must both be negative i.e. $x_{4}<0$. Furthermore, $x_{4}<0$ is possible, e.g. $x_{4}^{2}+2 x_{4}+1=0 \Longrightarrow x_{4}=-1$.
Case 2: If b is positive and c is negative, x_{4} may be positive or negative e.g. $x_{4}^{2}+x_{4}-2 \Longrightarrow$ $x_{4} \in\{-2,1\}$.
Case 3: If b is negative and c is positive, the two roots have positive product and positive sum, so they must both be positive i.e. $x_{4}>0$. Furthermore, $x_{4}>0$ is possible e.g. $x_{4}^{2}-2 x_{4}+1 \Longrightarrow x_{4}=1$.
Case 4: If b and c are both negative, x_{4} may be positive or negative e.g. $x_{4}^{2}-x_{4}-2 \Longrightarrow x_{4} \in$ $\{-1,2\}$.

Putting these cases together, we conclude that the answer is 12 .
5. a and b are nonnegative real numbers such that $\sin (a x+b)=\sin (29 x)$ for all integers x. Find the smallest possible value of a.
Answer: 10 $\boldsymbol{\pi} \mathbf{- 2 9 .}$

Solution: First, since $\sin (b)=\sin (0)=0$, we have $b=n \pi$ for some integer n. Since sin has period 2π, we need only consider the cases when $b=0$ and $b=\pi$.
Now let $b \in\{0, \pi\}$ and a be any real number. If for all integers $x, \sin (a x+b)=\sin (29 x)$, then for any integer n,

$$
\sin ((a+2 \pi n) x+b)=\sin (a x+b+2 \pi n x)=\sin (a x+b)=\sin (29 x)
$$

for all integers x as well. Conversely, assume for some a and c that for all integers $x, \sin (a x+b)=$ $\sin (c x+b)=\sin (29 x)$. Then, for all integers x,

$$
\begin{aligned}
\sin (a x) & =\frac{\sin (a x) \cos (b)+\cos (a x) \sin (b)}{\cos (b)} \\
& =\frac{\sin (a x+b)}{\cos (b)} \\
& =\frac{\sin (c x+b)}{\cos (b)} \\
& =\frac{\sin (c x) \cos (b)+\cos (c x) \sin (b)}{\cos (b)}=\sin (c x),
\end{aligned}
$$

since $\sin (0)=\sin (\pi)=0$ and $\cos (0), \cos (\pi) \neq 0$. But then, $\sin (a)=\sin (c)$ and $2 \sin (a) \cos (a)=$ $\sin (2 a)=\sin (2 c)=2 \sin (c) \cos (c)$ implies $\cos (a)=\cos (c) \operatorname{since} \sin (a)=\sin (c)=\frac{\sin (29)}{\cos (b)} \neq 0$. Hence, a and c are the same angle, modulo integer multiples of 2π.

Now, we consider the two cases concretely. If $b=0$, one valid assignment of a is $a=29$, so all possible ones are $a=29+2 \pi n$ for integers n. The smallest positive number we can make this is $29-8 \pi$, since $10 \pi \approx 31.4>29$.
Meanwhile, if $b=\pi$, one valid assignment of a is $a=-29$, since $\sin (-29 x+\pi)=\sin (-29 x) \cos (\pi)$ $+\cos (-29 x) \sin (\pi)=-\sin (-29 x)=\sin (29 x)$. So, all possible ones are $a=-29+2 \pi n$ for integers n. The smallest positive number we can make this is $10 \pi-29$. We can easily see that $29 \in(9 \pi, 10 \pi)$, so $10 \pi-29<\pi<29-8 \pi$.
6. Find the minimum value of

$$
\frac{1}{x-y}+\frac{1}{y-z}+\frac{1}{x-z}
$$

for reals $x>y>z$ given $(x-y)(y-z)(x-z)=17$.
Answer: $\frac{3}{\sqrt[3]{68}}$
Solution: Combining the first two terms, we have

$$
\frac{x-z}{(x-y)(y-z)}+\frac{1}{x-z}=\frac{(x-z)^{2}}{17}+\frac{1}{x-z} .
$$

What remains is to find the minimum value of $f(a)=\frac{a^{2}}{17}+\frac{1}{a}=\frac{a^{2}}{17}+\frac{1}{2 a}+\frac{1}{2 a}$ for positive values of a. Using AM-GM, we get $\frac{3}{\sqrt[3]{68}}$.
7. Compute the smallest value p such that, for all $q>p$, the polynomial $x^{3}+x^{2}+q x+9$ has exactly one real root.
Answer: $-\frac{39}{4}$

Solution:

Let $f(x)=x^{3}+x^{2}+p x+9$. Then $f(x)$ must have a negative root a and a double root b. By viete's, we have the following equations:

$$
\begin{gathered}
a b^{2}=-9 \\
a+2 b=-1
\end{gathered}
$$

This gives the cubic $(2 b+1) b^{2}=9 \Rightarrow 2 b^{3}+b^{2}-9=0$. This equation yields $b=\frac{3}{2}$ as the only real solution, so $a=-4$ and $p=-\frac{39}{4}$.
8. $P(x)$ and $Q(x)$ are two polynomials such that

$$
P(P(x))=P(x)^{16}+x^{48}+Q(x) .
$$

Find the smallest possible degree of Q.

Answer: 35

Solution: Note: we use the notation $O\left(x^{n}\right)$ to denote an arbitrary polynomial whose degree is at most n.
We first try to find a Q with degree <48. It turns out this is feasible. Let d be the degree of P. $P(P(x))$ has degree d^{2}, and $P(x)^{16}+x^{48}+Q(x)$ has degree $\max (16 d, 48)$. Since 48 is not a perfect square, the degree must be $16 d$, which implies $d=16$.
Now let $R(x)=P(x)-x^{16}$, so

$$
R(P(x))=x^{48}+Q(x)
$$

Since R applied to a degree-16 polynomial yields a degree-48 polynomial, the degree of R must be 3. So, we have $P(x)=x^{16}+a x^{3}+O\left(x^{2}\right)$ for some $a \neq 0$; we can also show from here that in fact $a=1$. Therefore,

$$
P(P(x))=P(x)^{16}+P(x)^{3}+O\left(P(x)^{2}\right)=P(x)^{16}+x^{48}+3 x^{35}+O\left(x^{34}\right)
$$

Hence, if the degree of Q is <48, it must be exactly 35 .
9. Let b_{n} be defined by the formula

$$
b_{n}=\sqrt[3]{-1+a_{1} \sqrt[3]{-1+a_{2} \sqrt[3]{-1+\ldots a_{n-1} \sqrt[3]{-1+a_{n}}}}}
$$

where $a_{n}=n^{2}+3 n+3$. Find the smallest real number L such that $b_{n}<L$ for all n.
Answer: 3
Solution: One way of solving this problem is by noticing the identity

$$
\begin{gathered}
n+2=\sqrt[3]{(n+2)^{3}+1-1}=\sqrt[3]{-1+(n+2)^{3}+1}=\sqrt[3]{-1+\left((n+2)^{2}-(n+2)+1\right)(n+3)}= \\
=\sqrt[3]{-1+\left(n^{2}+3 n+3\right)(n+3)}=\sqrt[3]{-1+a_{n}(n+3)}
\end{gathered}
$$

It is quite easy to see that $n+k+2=\sqrt[3]{-1+a_{n+k}(n+k+3)}$, so the formula may be applied recursively to obtain the result

$$
3=\sqrt[3]{-1+a_{1} \sqrt[3]{-1+a_{2} \sqrt[3]{-1+\ldots+a_{k-1} \sqrt[3]{-1+a_{k}(k+3)}}}}
$$

for arbitrary $k \geq 1$. Then for all $n \geq 1$,

$$
\sqrt[3]{-1+a_{1} \sqrt[3]{-1+\ldots \sqrt[3]{-1+a_{n}}}}<\sqrt[3]{-1+a_{1} \sqrt[3]{-1+\ldots+\sqrt[3]{-1+a_{n}(n+3)}}}=3
$$

This gives a pretty good candidate for L.
Next, it is pretty clear that b_{n} is an increasing (just by checking what happens in the innermost radicals), and the upper bound of 3 implies that b_{n} approaches some number ≤ 3 for large n essentially, this is intuitive justification for the existence of L. This also motivates checking if $L=3$ or not by the following way:
Define $b_{n}(k)$ as the same formula for b_{n} with n roots, but instead of starting at a_{1}, it starts at n_{k}. Using computations very similar to those above, we may determine that, more generally,

$$
b_{n}(k)<k+2
$$

and that $b_{n}(k)$ increases as n increases for any fixed k. Next, define

$$
c_{n}(k)=k+2-b_{n}(k) .
$$

If $c_{n}(k)$ gets arbitrarily close to 0 , then L cannot be less than 3 , which would prove that $L=3$. We compute

$$
\begin{aligned}
c_{n}(k) & =k+2-b_{n}(k)=k+2-\sqrt[3]{-1+a_{k} b_{n-1}(k+1)}=\frac{(k+2)^{3}+1-a_{k} b_{n-1}(k+1)}{(k+2)^{2}+(k+2) b_{n}(k)+b_{n}(k)^{2}} \\
& =\frac{(k+3)\left((k+2)^{2}-(k+2)+1\right)-a_{k} b_{n-1}(k+1)}{(k+2)^{2}+(k+2) b_{n}(k)+b_{n}(k)^{2}}=\frac{a_{k}\left((k+3)-b_{n-1}(k+1)\right)}{(k+2)^{2}+(k+2) b_{n}(k)+b_{n}(k)^{2}} \\
& =\frac{a_{k} c_{n-1}(k+1)}{(k+2)^{2}+(k+2) b_{n}(k)+b_{n}(k)^{2}}<\frac{a_{k} c_{n-1}(k+1)}{(k+2)^{2}+(k+2)+1} \\
& =\frac{a_{k} c_{n-1}(k+1)}{k^{2}+5 k+7}=\frac{a_{k}}{a_{k+1}} c_{n-1}(k+1) .
\end{aligned}
$$

I used the fact that $b_{n}(k)>1$ which is true because $a_{k}>2$ for $k \geq 1$, and by replacing all the a_{i} with 2 in the expression for $b_{n}(k)$ you get simply 1 . Applying this inequality repeatedly, we get

$$
\begin{aligned}
c_{n}(k) & <\frac{a_{k}}{a_{k+1}} \frac{a_{k+1}}{a_{k+2}} \cdots \frac{a_{n+k-2}}{a_{n+k-1}} c_{1}(n+k-1)=\frac{a_{k}}{a_{n+k-1}} c_{1}(n+k-1) \\
& =\frac{a_{k}}{a_{n+k-1}}\left(n+k+1-b_{1}(n+k-1)\right)=\frac{\left(k^{2}+3 k+3\right)\left(n+k+1-\sqrt[3]{-1+a_{n+k-1}}\right)}{(n+k-1)^{2}+3(n+k-1)+3} \\
& =\frac{1}{n} \frac{\left(k^{2}+3 k+3\right)\left(1+k / n+1 / n-\sqrt[3]{-1 / n^{3}+a_{n+k-1} / n^{3}}\right)}{(1+k / n-1 / n)^{2}+3\left(1 / n+k / n^{2}-1 / n^{2}\right)+3 / n^{2}} .
\end{aligned}
$$

From this expression it is clear that, for any fixed k, for very large $n c_{n}(k)$ will get arbitrarily close to 0 . The fraction multiplied by the $\frac{1}{n}$ has denominator approaching 1 and numerator approaching $k^{2}+3 k+3$, as n becomes very large, because $k / n \rightarrow 0,1 / n \rightarrow 0$ and $a_{n+k-1} / n^{3}=$ $\left((n+k-1)^{2}+(n+k-1)+1\right) / n^{3} \rightarrow 0$. So for large n, we may approximate the expression with

$$
\frac{1}{n} \cdot\left(k^{2}+3 k+3\right) \rightarrow 0 .
$$

Thus, $b_{n}(k)$ can get arbitrary close to $k+2$ but never reach it, and the case $k=1$ gives us the result that $L=3$.
10. Let $x_{0}=1, x_{1}=0$, and $x_{i}=-3 x_{i-1}+x_{i-2}$ for $i \geq 2$. Let $y_{0}=0, y_{1}=1$, and $y_{i}=-3 y_{i-1}+y_{i-2}$ for $i \geq 2$. Compute

$$
\sum_{i=0}^{2013} \frac{\left(x_{i} y_{2014}-y_{i} x_{2014}\right)^{2}}{y_{2014}^{2}}
$$

You may give your answer in terms of at most ten values of the x_{i} and/or y_{i} (but must otherwise simplify completely).
Answer: $\frac{3 y_{2014}-x_{2014}}{3 y_{2014}}=-\frac{y_{2015}}{3 y_{2014}}$
Solution 1: Let $a=-x_{2014} / y_{2014}$.
We first show that $x_{i}+a y_{i}>0$ for all i. Solving the linear recurrences gives

$$
\begin{gathered}
x_{i}=\frac{(-1)^{i}(-3+\sqrt{13})}{2 \sqrt{13}}\left(\frac{3+\sqrt{13}}{2}\right)^{i}+\frac{3+\sqrt{13}}{2 \sqrt{13}}\left(\frac{-3+\sqrt{13}}{2}\right)^{i} \\
y_{i}=-\frac{(-1)^{i}}{\sqrt{13}}\left(\frac{3+\sqrt{13}}{2}\right)^{i}+\frac{1}{\sqrt{13}}\left(\frac{-3+\sqrt{13}}{2}\right)^{i} .
\end{gathered}
$$

By cross-multiplying and cancelling terms, we conclude that

$$
\frac{x_{i}}{y_{i}}-\frac{\frac{-3+\sqrt{13}}{2 \sqrt{13}}}{-\frac{1}{\sqrt{13}}}=\frac{(-3+\sqrt{13})^{i}}{\left.\sqrt{13}\left(-\frac{(-1)^{i}}{\sqrt{13}}(3+\sqrt{13})^{i}+\frac{1}{\sqrt{13}}(-3+\sqrt{13})\right)^{i}\right)} .
$$

Since $-3+\sqrt{13}<-3+\sqrt{16}=1$ and the denominator is $2^{i} y_{i} \sqrt{13}$, this number decreases monotonically in magnitude as i increases and alternates in sign. That is, as i increases, x_{i} / y_{i} gets monotonically closer to $(3-\sqrt{13}) / 2$ while alternating between being slightly above and slightly below. This means that $-x_{2 i+1} / y_{2 i+1}<a<-x_{2 i} / y_{2 i}$ for all $i \leq 1006$, as desired.
Hence consider the sequence of rectangles $R_{0}, R_{1}, \ldots, R_{2013}$, where $R_{2 i}$ has height $x_{2 i}+a y_{2 i}$ and width $3\left(x_{2 i}+a y_{2 i}\right)$ and $R_{2 i+1}$ has height $3\left(x_{2 i+1}+a y_{2 i+1}\right)$ and width $x_{2 i+1}+a y_{2 i+1}$. Draw $R_{2 i+1}$ adjacent to $R_{2 i}$ to the right with bottom edges aligned, and $R_{2 i+2}$ adjacent to $R_{2 i+1}$ above with left edges aligned. Then the entire drawing exactly forms a rectangle of height 1 and width $3+a$, hence area $3+a$. On the other hand the area of the rectangle is clearly 3 times the area of the desired sum. Therefore the sum has value $\frac{3+a}{3}=\frac{3 y_{2014}-x_{2014}}{3 y_{2014}}$.
Solution 2: Solving the linear recurrences, plugging in, and expanding results in a sum of a few geometric series. It should be possible to bash through this to get the same answer.

