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1. Alice and Bob are painting a house. If Alice and Bob do not take any breaks, they will finish
painting the house in 20 hours. If, however, Bob stops painting once the house is half-finished,
then the house takes 30 hours to finish. Given that Alice and Bob paint at a constant rate,
compute how many hours it will take for Bob to paint the entire house if he does it by himself.

Answer: 40

Solution: In 10 hours, Alice and Bob paint half the house. Therefore, Alice can paint half the
house in 20 hours. This means Alice painted a quarter of the house in 10 hours, which means
Bob paints a quarter of the house in 10 hours, so Bob takes 40 hours to paint the entire house.

2. Compute 96 + 6 · 95 + 15 · 94 + 20 · 93 + 15 · 92 + 6 · 9.

Answer: 999999

Solution: From the Binomial Theorem, this is just (9 + 1)6 − 1 = 999999 .

3. Let x1 and x2 be the roots of x2 − x − 2014, with x1 < x2. Let x3 and x4 be the roots of
x2 − 2x− 2014, with x3 < x4. Compute (x4 − x2) + (x3 − x1).
Answer: 1

Solution: Note that x3 + x4 = 2 and x1 + x2 = 1, giving an answer of 1 .

4. For any 4-tuple (a1, a2, a3, a4) where each entry is either 0 or 1, call it quadratically satisfiable if
there exist real numbers x1, . . . , x4 such that x1x

2
4 +x2x4 +x3 = 0 and for each i = 1, . . . , 4, xi is

positive if ai = 1 and negative if ai = 0. Find the number of quadratically satisfiable 4-tuples.

Answer: 12

Solution: First, we may assume a1 = 1 without loss of generality and multiply our answer by
2 at the end, since ax2 + bx+ c = 0⇔ −ax2 − bx− c = 0. We can furthermore assume x1 = 1,
since we can always divide the whole equation by x1 (since x1 > 0).

Hence, we now consider equations of the form x24 + bx4 + c = 0 in which b and c are constrained
to be either positive or negative. This yields four cases:

Case 1: If b and c are both positive, the two roots have positive product but negative sum,
so they must both be negative i.e. x4 < 0. Furthermore, x4 < 0 is possible, e.g.
x24 + 2x4 + 1 = 0 =⇒ x4 = −1.

Case 2: If b is positive and c is negative, x4 may be positive or negative e.g. x24 + x4 − 2 =⇒
x4 ∈ {−2, 1}.

Case 3: If b is negative and c is positive, the two roots have positive product and positive
sum, so they must both be positive i.e. x4 > 0. Furthermore, x4 > 0 is possible e.g.
x24 − 2x4 + 1 =⇒ x4 = 1.

Case 4: If b and c are both negative, x4 may be positive or negative e.g. x24 − x4 − 2 =⇒ x4 ∈
{−1, 2}.

Putting these cases together, we conclude that the answer is 12 .

5. a and b are nonnegative real numbers such that sin(ax + b) = sin(29x) for all integers x. Find
the smallest possible value of a.

Answer: 10π − 29.
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Solution: First, since sin(b) = sin(0) = 0, we have b = nπ for some integer n. Since sin has
period 2π, we need only consider the cases when b = 0 and b = π.

Now let b ∈ {0, π} and a be any real number. If for all integers x, sin(ax+ b) = sin(29x), then
for any integer n,

sin((a+ 2πn)x+ b) = sin(ax+ b+ 2πnx) = sin(ax+ b) = sin(29x)

for all integers x as well. Conversely, assume for some a and c that for all integers x, sin(ax+b) =
sin(cx+ b) = sin(29x). Then, for all integers x,

sin(ax) =
sin(ax) cos(b) + cos(ax) sin(b)

cos(b)

=
sin(ax+ b)

cos(b)

=
sin(cx+ b)

cos(b)

=
sin(cx) cos(b) + cos(cx) sin(b)

cos(b)
= sin(cx),

since sin(0) = sin(π) = 0 and cos(0), cos(π) 6= 0. But then, sin(a) = sin(c) and 2 sin(a) cos(a) =

sin(2a) = sin(2c) = 2 sin(c) cos(c) implies cos(a) = cos(c) since sin(a) = sin(c) = sin(29)
cos(b) 6= 0.

Hence, a and c are the same angle, modulo integer multiples of 2π.

Now, we consider the two cases concretely. If b = 0, one valid assignment of a is a = 29, so all
possible ones are a = 29 + 2πn for integers n. The smallest positive number we can make this
is 29− 8π, since 10π ≈ 31.4 > 29.

Meanwhile, if b = π, one valid assignment of a is a = −29, since sin(−29x+π) = sin(−29x) cos(π)
+ cos(−29x) sin(π) = − sin(−29x) = sin(29x). So, all possible ones are a = −29 + 2πn for
integers n. The smallest positive number we can make this is 10π − 29 . We can easily see that
29 ∈ (9π, 10π), so 10π − 29 < π < 29− 8π.

6. Find the minimum value of
1

x− y
+

1

y − z
+

1

x− z
for reals x > y > z given (x− y)(y − z)(x− z) = 17.

Answer: 3
3√
68

Solution: Combining the first two terms, we have

x− z
(x− y)(y − z)

+
1

x− z
=

(x− z)2

17
+

1

x− z
.

What remains is to find the minimum value of f(a) = a2

17 + 1
a = a2

17 + 1
2a + 1

2a for positive values

of a. Using AM-GM, we get
3

3
√

68
.

7. Compute the smallest value p such that, for all q > p, the polynomial x3 + x2 + qx + 9 has
exactly one real root.

Answer: −
39

4
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Solution:

Let f(x) = x3 + x2 + px + 9. Then f(x) must have a negative root a and a double root b. By
viete’s, we have the following equations:

ab2 = −9

a+ 2b = −1

This gives the cubic (2b+ 1)b2 = 9⇒ 2b3 + b2 − 9 = 0. This equation yields b =
3

2
as the only

real solution, so a = −4 and p = −39

4
.

8. P (x) and Q(x) are two polynomials such that

P (P (x)) = P (x)16 + x48 +Q(x).

Find the smallest possible degree of Q.

Answer: 35

Solution: Note: we use the notation O(xn) to denote an arbitrary polynomial whose degree is
at most n.

We first try to find a Q with degree < 48. It turns out this is feasible. Let d be the degree of
P . P (P (x)) has degree d2, and P (x)16 + x48 +Q(x) has degree max(16d, 48). Since 48 is not a
perfect square, the degree must be 16d, which implies d = 16.

Now let R(x) = P (x)− x16, so
R(P (x)) = x48 +Q(x).

Since R applied to a degree-16 polynomial yields a degree-48 polynomial, the degree of R must
be 3. So, we have P (x) = x16 + ax3 + O(x2) for some a 6= 0; we can also show from here that
in fact a = 1. Therefore,

P (P (x)) = P (x)16 + P (x)3 +O(P (x)2) = P (x)16 + x48 + 3x35 +O(x34).

Hence, if the degree of Q is < 48, it must be exactly 35 .

9. Let bn be defined by the formula

bn =
3

√
−1 + a1

3

√
−1 + a2

3

√
−1 + . . . an−1

3
√
−1 + an

where an = n2 + 3n+ 3. Find the smallest real number L such that bn < L for all n.

Answer: 3

Solution: One way of solving this problem is by noticing the identity

n+ 2 = 3
√

(n+ 2)3 + 1− 1 = 3
√
−1 + (n+ 2)3 + 1 = 3

√
−1 + ((n+ 2)2 − (n+ 2) + 1)(n+ 3) =

= 3
√
−1 + (n2 + 3n+ 3)(n+ 3) = 3

√
−1 + an(n+ 3)
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It is quite easy to see that n+ k + 2 = 3
√
−1 + an+k(n+ k + 3), so the formula may be applied

recursively to obtain the result

3 =
3

√
−1 + a1

3

√
−1 + a2

3

√
−1 + . . .+ ak−1

3
√
−1 + ak(k + 3)

for arbitrary k ≥ 1. Then for all n ≥ 1,

3

√
−1 + a1

3

√
−1 + . . . 3

√
−1 + an <

3

√
−1 + a1

3

√
−1 + . . .+ 3

√
−1 + an(n+ 3) = 3

This gives a pretty good candidate for L.

Next, it is pretty clear that bn is an increasing (just by checking what happens in the innermost
radicals), and the upper bound of 3 implies that bn approaches some number ≤ 3 for large n-
essentially, this is intuitive justification for the existence of L. This also motivates checking if
L = 3 or not by the following way:

Define bn(k) as the same formula for bn with n roots, but instead of starting at a1, it starts at
nk. Using computations very similar to those above, we may determine that, more generally,

bn(k) < k + 2

and that bn(k) increases as n increases for any fixed k. Next, define

cn(k) = k + 2− bn(k).

If cn(k) gets arbitrarily close to 0, then L cannot be less than 3, which would prove that L = 3.
We compute

cn(k) = k + 2− bn(k) = k + 2− 3
√
−1 + akbn−1(k + 1) =

(k + 2)3 + 1− akbn−1(k + 1)

(k + 2)2 + (k + 2)bn(k) + bn(k)2

=
(k + 3)((k + 2)2 − (k + 2) + 1)− akbn−1(k + 1)

(k + 2)2 + (k + 2)bn(k) + bn(k)2
=

ak((k + 3)− bn−1(k + 1))

(k + 2)2 + (k + 2)bn(k) + bn(k)2

=
akcn−1(k + 1)

(k + 2)2 + (k + 2)bn(k) + bn(k)2
<

akcn−1(k + 1)

(k + 2)2 + (k + 2) + 1

=
akcn−1(k + 1)

k2 + 5k + 7
=

ak
ak+1

cn−1(k + 1).

I used the fact that bn(k) > 1 which is true because ak > 2 for k ≥ 1, and by replacing all the ai
with 2 in the expression for bn(k) you get simply 1. Applying this inequality repeatedly, we get

cn(k) <
ak
ak+1

ak+1

ak+2
· · · an+k−2

an+k−1
c1(n+ k − 1) =

ak
an+k−1

c1(n+ k − 1)

=
ak

an+k−1
(n+ k + 1− b1(n+ k − 1)) =

(k2 + 3k + 3)(n+ k + 1− 3
√
−1 + an+k−1)

(n+ k − 1)2 + 3(n+ k − 1) + 3

=
1

n

(k2 + 3k + 3)(1 + k/n+ 1/n− 3
√
−1/n3 + an+k−1/n3)

(1 + k/n− 1/n)2 + 3(1/n+ k/n2 − 1/n2) + 3/n2
.
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From this expression it is clear that, for any fixed k, for very large n cn(k) will get arbitrarily
close to 0. The fraction multiplied by the 1

n has denominator approaching 1 and numerator
approaching k2 + 3k+ 3, as n becomes very large, because k/n→ 0, 1/n→ 0 and an+k−1/n

3 =
((n+ k− 1)2 + (n+ k− 1) + 1)/n3 → 0. So for large n, we may approximate the expression with

1

n
· (k2 + 3k + 3)→ 0.

Thus, bn(k) can get arbitrary close to k + 2 but never reach it, and the case k = 1 gives us the
result that L = 3 .

10. Let x0 = 1, x1 = 0, and xi = −3xi−1 +xi−2 for i ≥ 2. Let y0 = 0, y1 = 1, and yi = −3yi−1 + yi−2
for i ≥ 2. Compute

2013∑
i=0

(xiy2014 − yix2014)2

y22014
.

You may give your answer in terms of at most ten values of the xi and/or yi (but must otherwise
simplify completely).

Answer: 3y2014−x2014

3y2014
= − y2015

3y2014

Solution 1: Let a = −x2014/y2014.
We first show that xi + ayi > 0 for all i. Solving the linear recurrences gives

xi =
(−1)i(−3 +

√
13)

2
√

13

(
3 +
√

13

2

)i

+
3 +
√

13

2
√

13

(
−3 +

√
13

2

)i

,

yi = −(−1)i√
13

(
3 +
√

13

2

)i

+
1√
13

(
−3 +

√
13

2

)i

.

By cross-multiplying and cancelling terms, we conclude that

xi
yi
−
−3+

√
13

2
√
13

− 1√
13

=
(−3 +

√
13)i

√
13
(
− (−1)i√

13
(3 +

√
13)i + 1√

13
(−3 +

√
13))i

) .
Since −3 +

√
13 < −3 +

√
16 = 1 and the denominator is 2iyi

√
13, this number decreases

monotonically in magnitude as i increases and alternates in sign. That is, as i increases, xi/yi
gets monotonically closer to (3 −

√
13)/2 while alternating between being slightly above and

slightly below. This means that −x2i+1/y2i+1 < a < −x2i/y2i for all i ≤ 1006, as desired.

Hence consider the sequence of rectangles R0, R1, . . . , R2013, where R2i has height x2i +ay2i and
width 3(x2i+ay2i) and R2i+1 has height 3(x2i+1+ay2i+1) and width x2i+1+ay2i+1. Draw R2i+1

adjacent to R2i to the right with bottom edges aligned, and R2i+2 adjacent to R2i+1 above with
left edges aligned. Then the entire drawing exactly forms a rectangle of height 1 and width 3+a,
hence area 3 + a. On the other hand the area of the rectangle is clearly 3 times the area of the

desired sum. Therefore the sum has value 3+a
3 =

3y2014 − x2014
3y2014

.

Solution 2: Solving the linear recurrences, plugging in, and expanding results in a sum of a
few geometric series. It should be possible to bash through this to get the same answer.


