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1. Answer: 4

Solution: We know that 20132013 = 32013 · 112013 · 612013. Therefore, f1(20132013) = 20143.
2014 = 2 · 19 · 53, so 20143 has 43 = 64 divisors. f1(64) = 7, and f1(7) = 2. This means that
f4(20132013) = 2, so k = 4 .

2. Answer: 1
12

Solution: Let (ABC) denote the area of polygon ABC. Note that 4AFB ∼ 4MFD with
AB/MD = 2, so we have DF = 1

3BD. This implies that (MFD) = 1
3(MBD) = 1

3(12(CBD)) =
1
12 . By symmetry, (MGC) = 1

12 as well. Therefore, we have (MFEG) = (CED) − (MBD) −

(MGC) = 1
4 −

1
12 −

1
12 =

1

12
.

3. Answer: 280

Solution 1: Given a permutation of nine people, let us have the first three people be in one
group, the second three people in another group, and the last three people in a third group. We
want to compute how many permutations generate the same group. Note that there are (3!)3

ways to permute people within each group, and there are 3! ways to permute the overall groups,

so the answer is
9!

(3!)4
= 280 .

Solution 2: Note that if three people are doing this, there is trivially exactly one unique
iteration.

If six people are doing this, then arbitrarily label one person. There are
(
5
2

)
groups that can be

created with this person, and then the other three people are forced to be in a group, so there
are

(
5
2

)
iterations for six people.

If nine people are doing this, then arbitrarily label one person. There are
(
8
2

)
groups that can

be created with this person, and then the other six people can form groups in
(
5
2

)
ways, so there

are
(
5
2

)
·
(
8
2

)
= 280 iterations for nine people.

4. Answer: (7, 3)

Solution: The first term is just (xa)b(x3)a = xab+3a, so ab + 3a = 42. Using the bino-
mial theorem, the second term is (

(
b
1

)
(xa)b−1(abxa−1))(x3)a + (

(
a
1

)
(x3)a−1(3bx2))(xa)b = (ab2 +

3ab)xab+3a−1, so ab2 + 3ab = 126. Factoring these two equations gives a(b + 3) = 42 and
ab(b+ 3) = 126. Dividing the second equation by the first gives b = 3 . Then, substituting that

into the first equation gives a = 7 .

5. Answer: (n+ 2)2n−1

Solution: There are 2n cases, which can be considered based on their divisibility by powers of
2. Suppose we twist the prism by x

2n of a full rotation where x = 2k · y and y is odd. Note that
under this twist, each of the original 2n faces is linked to every xth face. Since y is odd, we see
that the first multiple of x divisible by 2n is 2n−k · x. Thus, each face in the new figure is made
up of 2n−k faces from the original (untwisted) form and there are 2n

2n−k = 2k sides for this figure.

Next, we must consider how many rotations have x of the form 2k · y for a fixed value of k. The
number of integers less than or equal to 2n that are divisible by 2k and not 2k+1 is 2n

2k
− 2n

2k+1 .

For k < n, this equals 2n−k−1. Finally, we add in the untwisted case, with 2n faces. Thus, the

total number of sides is
n−1∑
k=0

2k · 2n−k−1 + 2n = n2n−1 + 2n = (n+ 2)2n−1 .
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6. Answer: 4

Solution: Let a1, . . . , a5 denote the 5 elements of A in increasing order. Let S denote
∑5

i=1 ai.

First, note that 1, 2 ∈ A because there are no other ways to obtain 1 and 2. Hence, we only
have to think about the other three elements of A.

Note that there are 25− 1 = 31 non-empty subsets of A, so at most two of those subsets are not
useful to the subset-sum constraint, either by having sum greater than 29 or being redundant
with another subset.

We condition on the value of S. This sum is clearly at least 29, and must be at most 31, since
S, S − 1, and S − 2 are all achievable subset-sums, so we require S − 2 ≤ 29.

If S = 31, then A \ {1} has sum 30, so each subset has a distinct sum. Therefore, 4 ∈ A because
the only other way to get 4 would be 1 + 3, but 3 ∈ A would imply there were two different
ways to get 3, namely 1 + 2 and 3. Similarly, since the subsets of {1, 2, 4} can sum to any
positive integer less than 8, 8 ∈ A. 16 ∈ A for the same reason for the set {1, 2, 4, 8}, and so A
is completely determined.

If S = 30, we may have exactly one pair of subsets with the same sum. Hence, we still get 4 ∈ A
because 3 ∈ A would imply a1 + a2 = a3 and a1 + a2 + a5 = a3 + a5. Similarly, 8 ∈ A. Finally,
since we know all elements of A must sum to 30, we choose a5 = 15.

If S = 29, then we still have 4 ∈ A because there will be more than two redundant pairs of
subsets if 3 ∈ S. In general, we cannot have x + y = z for x, y, z ∈ A because there would be
too many redundant sets. Hence, a4 ≥ 7. It can be at most 8, since otherwise there would be
no way to achieve a sum of 8, so there are two cases for a4. Each choice of a4 determines a5
by the condition on S. We can verify that a4 = 7, a5 = 15 works because {1, 2, 4} can generate
all sums ≤ 7, so {1, 2, 4, 7} can generate all sums ≤ 14. Adding 15 clearly yields all sums ≤ 29.
The other case can be checked trivially.

Hence, in total there are 4 viable sets.

7. Answer: (−1, 0) ∪ 1
4

Solution: There are two possibilities: either the curves y = x2 + u and x = y2 + u intersect
in exactly one point, or they intersect in two points but one of the points occurs on the branch
y = −

√
x− u.

Case 1: the two curves are symmetric about y = x, so they must touch that line at exactly one
point and not cross it. Therefore, x = x2 + u, so x2 − x+ u = 0. This has exactly one solution

if the discriminant, (−1)2 + 4(1)(u) = 1 + 4u, equals 0, so u =
1

4
.

Case 2: y = x2 + u intersects the x-axis at ±
√
−u, while y =

√
x− u starts at x = u and goes

up from there. In order for these to intersect in exactly one point, we must have −
√
−u < u, or

−u > u2 (note that −u must be positive in order for any intersection points of y = x2 + u and
x = y2 + u to occur outside the first quadrant). Hence we have u(u+ 1) < 0, or u ∈ (−1, 0).

8. Answer:
√

33−3
3

Solution: We can un-parametrize this equations easily to see that Rational Man is traveling
along the circle

x2 + y2 = 1
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with a period of 2π, while Irrational Man is travelling along the ellipse

(x− 1)2

16
+
y2

4
= 1

with a period of 2π
√

2.

Now, we claim that d is equal to the smallest distance between a point on the given circle and a
point on the given ellipse. This is because for any number r ∈ [0, 1), we can find a positive integer
multiple of

√
2 whose fractional part is arbitrarily close to r, using a Pigeonhole argument. More

precisely, for any n ∈ N, we consider
√

2, 2
√

2, . . . , n
√

2. Now divide the region between 0 and 1
into n equally-spaced intervals. For a given r ∈ [0, 1), find the interval it falls into. Either one of
our n multiples of

√
2 falls into this interval (and thus is at most 1

n from r), or none of them do,
in which case two numbers fall into the same interval, and thus their difference has fractional
part of magnitude less than 1

n . Now it is clear that we can take a multiple of this number that
is within 1

n of r.

Now consider Rational Man’s position at any time t. This is the same as his position at time
t + 2πn for all n ∈ N. Now, if Irrational Man assumes some position at time t′, then he also
assumes it at time t′ + 2πm

√
2 for all m ∈ N. By the fact proven above, we can always choose

an m such that t′ + 2πm
√

2 is arbitrarily close to t + 2πn for some n ∈ N (divide through by
2π to make this clearer). Since the two drivers can get arbitrarily close to any pair of points on
their respective paths, d must simply be the shortest distance between these two paths.

Now we make the observation that given a circle of radius r centered at O and a point P outside
this circle, the shortest distance from P to the circle is along the line that passes through O.
This is evident by applying the Triangle Inequality to triangle OPQ, where Q is any point on
the circle that is not on the line OP . Hence, minimizing distance between the ellipse and the
circle is equivalent to minimizing distance between the ellipse and the center of the circle, i.e.
the origin.

Hence, we set out to minimize x2 + y2 subject to the constraint (x−1)2
16 + y2

4 = 1. Thus, we are
minimizing

x2 + 4− 1

4
(x− 1)2 =

1

4
(3x2 + 2x+ 15).

This attains its minimum value at x = −1
3 , so the minimum squared distance from the origin is

11
3 . We want one less than the distance to the origin as our final answer, so report

√
33− 3

3
.

9. Answer: 14951
150

Solution: We claim that when 100 is replaced by n, the answer is n− n−2
3n = 3n2−n+2

3n .

By symmetry and linearity of expectation, we need only compute the expected value of y, then
multiply by two.

First, each i = 1, . . . , n − 1 is seen n − 2 times (once in each row except for row i), while n is
present in every row. Hence, the sum of all values is

n(n− 1) + (n− 2)

n−1∑
i=1

i = n(n− 1) +
1

2
n(n− 1)(n− 2) =

1

2
n2(n− 1).
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Meanwhile, the sum of values in row i has weight

1

2
n(n+ 1)− i =

n(n+ 1)− 2i

2
.

Hence, the desired expectation is

n−1∑
i=1

(n(n+ 1)− 2i)

n2(n− 1)
i =

n+ 1

n(n− 1)

n−1∑
i=1

i− 2

n2(n− 1)

n−1∑
i=1

i2 =
n+ 1

2
− 2n− 1

3n
=

3n2 − n+ 2

6n
.

Multiplying by two gives the final answer.

10. Answer: π(2+
√

3)2

8
√

3
= π(7+4

√
3)

8
√

3
= π

(
1
2
+ 7

8
√

3

)
= π

(
1
2
+ 7
√

3
24

)
Solution: Let α = 5π/6. First, notice that because the tangent line has constant slope, the
intersection point on every circle must occur at the same angle with respect to the circle’s center.
Likewise, the line between the intersection points on two circles must coincide with the tangent
line. Let circle 1 have radius R and center at (X, 0) and circle 2 have radius r. It follows that
circle 2 has a center at (X +R+ r, 0). Thus the two points of intersection with the tangent line
are (X + R cosα,R sinα) and (X + R + r + r cosα, r sinα). The line between these must have
slope − cotα, so

r sinα−R sinα

X +R+ r + r cosα− (X +R cosα)
= − cotα =⇒ r = R tan2 α/2.

Clearly, α < π/2 so tan2 α/2 < 1. Thus the radii obey a geometric series:

∞∑
n=0

π[tan2n α/2]2 = cos4
(α

2

)
secα.

Plugging in α = 5π/6 gives
π(2 +

√
3)2

8
√

3
.

11. Answer: 73513440 = 25 · 33 · 5 · 7 · 11 · 13 · 17
Solution: Note that 768 = 28 · 3. We can immediately upper bound the answer to 22 · 3 · 5 · 7 ·
11 · 13 · 17 · 19 · 23. It may be possible to increase exponents on small primes and discard larger
primes to reduce the answer.

There are a few cases to consider.

(a) 5 is the largest power of 5 that divides the answer. Therefore, one of 2 and 3 must contribute
the factor of 3 to the number of divisors. We have two subcases to consider at this point:

i. 2 contributes the factor of 3. We initially set 22 · 3. We can destroy 19 and 23 by using
25 and 33.

ii. 3 contributes the factor of 3. We must use 32, and therefore the power of 2 should be
27, destroying 19 and 23 also.

(b) 25 is the largest power of 5 that divides the answer. We must therefore use at least 23 and
33.
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Note that the very first subcase generates the smallest product, so the answer is therefore

25 · 33 · 5 · 7 · 11 · 13 · 17 .

12. Answer: t = 3
2π

arccos

(
r+
√
r2+8R2

4R

)
.

Solution: Define ω1 = 2π
3 and ω2 = 2π. Let (x1(t), y1(t)) be the location of Robin and

(x2(t), y2(t)) be the location of Eddy at time t. Let the center of the path be the origin and
Jack’s location be (R, 0). Then we have

x1 = r cos(ω1t) y1 = r sin(ω1t)

x2 = r cos(ω2t) y2 = r sin(ω2t).

The three people are collinear if and only if the slopes of the lines connecting any two people
are the same, i.e.

y1
x1 −R

=
y2

x2 −R
.

Plugging in and simplifying gives us r sin(ω2t − ω1t) = R sin(ω2t) − R sin(ω1t). Noting that
3ω1 = ω2 and using sum-to product identites, we get

r sin(ω1t) cos(ω1t) = R sin(ω1t) cos(2ω1t).

So either the first time the three people are collinear is when t = π or when r cos(ω1t) =
R cos(2ω1t). Using the double angle identity for cosine gives us a quadratic in cosine. We can
apply the quadratic formula to get

cos(ω1t) =
r ±
√
r2 + 8R2

4R
.

The positive root is the only collinear time that occurs when Robin is still in the first quadrant.
Therefore, it is the earliest time. r < R implies

cos(ω1t) =
r +
√
r2 + 8R2

4R
< 1,

so it is in the range of the cosine function. Hence, the answer is

t =
3

2π
arccos

(
r +
√
r2 + 8R2

4R

)
.

13. Answer: 22

Solution: We claim that N can be written on the board if and only if N + 1 has a prime
factorization of the form 3a5b7c, where a+ b+ c is odd. It remains to actually prove this.

Note that if we write N = xyz + xy + yz + zx + x + y + z, then we have that N + 1 =
(x+ 1)(y+ 1)(z+ 1). Note that the original numbers, 2, 4, and 6, are each less than the primes
3, 5, and 7, respectively. Therefore, we ensure that the only primes which can divide any valid
N + 1 are 3, 5, and 7. Furthermore, these numbers each have exponents summing to 1, an odd
integer, so therefore since we multiply three integers with an odd sum of exponents, we ensure
that all numbers which remain have an odd sum of exponents.

It remains to compute all numbers of the form 3a5b7c, where each number is less than or equal
to 2013 and the sum of the exponents is odd. There are 22 such numbers.
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14. Answer: 8− 4 log 2

Solution: Let f(x) be the average number of cuts you make if you start with x meters of string.
For x ∈ [0, 12), we have f(x) = 0.

To calculate f(x) for x ≥ 1
2 , say you make 1 cut that brings the length of the string to y. Then

you average a total of 1 + f(y) cuts. Note that y is distributed uniformly at random from x
2 to

x. So we average 1 + f(y) over y ∈ [x2 , x], which gives us

f(x) =
2

x

∫ x

x/2
f(y) dy + 1.

Now we have an initial condition and recurrence. To solve this, let F (x) =
∫ x
0 f(t) dt. In terms

of F , the recurrence is

F ′(x) =
2

x
(F (x)− F (x/2)) + 1.

For x ∈ [12 , 1), the initial condition tells us that F (x/2) = 0, so the recurrence simplifies to

F ′(x) =
2

x
F (x) + 1.

Also notice that we have an initial condition F (12) = 0. Since multiplying by 2
x is the same as

differentiation for x2, we might guess that a degree 2 polynomial solves this differential equation.
If we plug in a general degree 2 polynomial, we find that we are correct and that the solution
is F (x) = 2x2 − x for x ∈ [12 , 1). Plugging this into our original recurrence for F , we get the
following differential equation, now valid for x ∈ [1, 2]:

F ′(x) =
2

x
F (x)− x+ 2.

This time we could try another degree 2 polynomial, but it won’t work. We need to somehow get
a term involving x on one side without getting it on the other side in order to balance the x’s on
each side. Notice that x2 log x will give us an x when we differentiate but not when we multiply
by 2

x . So that might work. And indeed it does. We can plug in F (x) = ax2 + bx + cx2 log x,
solve for the coefficients (keeping in mind the initial condition F (1) = 1 that we get from our
previous expression for F ), and get F (x) = 3x2 − x2 log x− 2x.

Now we know F (x) on all of [0, 2], so we can differentiate it to get f(x). The result is

f(x) =


0, if x ∈ [0, 12)

4x− 1, if x ∈ [12 , 1)

5x− 2x log x− 2, if x ∈ [1, 2]

Therefore the answer is f(2) = 8− 4 log 2.

15. Answer:
√

2504 log2 2 + 2500π2

Solution: For ease of notation, let r0 = 100 and h = 4. Begin by flattening the cone into
a sector of a circle with radius R =

√
r20 + h2. The problem then is equivalent to finding the

optimal path from the polar point (r, θ) = (R, 0) to the point (R2 ,
r0
R · π) on the flattened cone.

We can find an optimal path by constructing a new “distance” metric that measures elapsed
time by considering standard Euclidean distance along with a factor that accounts for velocity.



RMT 2013 Team Test Solutions February 2, 2013

Observe that any point on the sector with “radius” (distance along the cone’s surface to the
center) r and height (on the cone) z satisfies h−z

h = r
R by similar triangles. Therefore, the speed

at radius r on the sector is r
R · v0.

Let the optimal path curve be given by γ(θ) = (r(θ), θ). We wish to optimize the integral that
gives the total time spent along the curve γ. We can measure length by the standard polar
arclength formula, and we can measure speed using the formula above. Hence, we can measure
time by looking at distance divided by speed:

∫ r0
R
·π

θ=0

distance

speed
=

∫ r0
R
·π

0

√
dr2 + r2 dθ2

r
R · v0

=
R

v0

∫ r0
R
·π

0

√
1 +

(
1

r
· dr
dθ

)2

dθ.

We now wish to find a coordinate transformation in which this path is a straight line, so that
the minimum time will just be the Euclidean distance between the endpoints. We can do this
by choosing a new coordinate r̃ so that 1

r ·
dr
dθ = dr̃

dθ . By integrating, it is easily seen that one such
substitution is log r = r̃, which results in the endpoints

(logR, 0) and

(
log

R

2
,
r0
R
· π
)
,

so our integral is √(
logR− log

R

2

)2

+
r20
R2
· π2 =

√
(log 2)2 +

r20
R2
· π2.

Multiplying by the constant terms we factored out of this integral earlier, our final answer (and
minimum time) is √

R2

v0
(log 2)2 +

r20
v20
· π2 =

√
2504(log 2)2 + 2500π2 .


