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1. (a) (i) {0, 5, 7, 10, 11, 12, 14} ∪ {n ∈ N0 : n ≥ 15}.
(ii) Yes, 〈5, 7, 11, 16〉 can be generated by a set of fewer than 4 elements. Specifically, it
is generated by {5, 7, 11} because 16 = 11 + 5 and therefore any 16’s in an element of
the semigroup can be written using 5’s and 11’s.

(iii) {0, 3, 6, 7, 8} ∪ {n ∈ N0 : n ≥ 9}.
(iv) No, 〈3, 7, 8〉 cannot be generated by a set of fewer than 3 elements. If this were
possible, then we could write 〈3, 7, 8〉 = 〈a, b〉 for two integers a < b. For this to work,
we must have a = 3. (If a < 3, then 〈a, b〉 contains a /∈ 〈3, 7, 8〉. If a > 3, then 〈a, b〉
doesn’t contain anything that can generate a 3. The only possibility left is a = 3.)
Furthermore, we must have b = 7. (If b < 6, then 〈3, b〉 contains b /∈ 〈3, 7, 8〉. If b > 7,
then 〈3, b〉 doesn’t contain anything that can generate a 7. And b = 6 is not allowed
because gcd(3, 6) > 1. The only possibility left is b = 7.) So if we can generate 〈3, 7, 8〉
using fewer than 3 elements, then 〈3, 7, 8〉 = 〈3, 7〉. This is not true, because 8 /∈ 〈3, 7〉.
Therefore the answer is no, as we claimed.

(b) Suppose x, y ∈ 〈a1, . . . , an〉. Then there are c1, . . . , cn, d1, . . . , dn ∈ N0 such that x =
c1a1 + · · ·+ cnan and y = d1a1 + · · ·+dnan. Then x+y = (c1 +d1)a1 + · · ·+(cn+dn)an,
which is in 〈a1, . . . , an〉 by definition.

(c) Let d1, . . . , dn be integers such that d1a1 + · · · + dnan = 1. Let M = max |di|. Let
s = a1Ma1 + a1Ma2 · · · + a1Man. Then for any 0 ≤ r < a1, all the coefficients in
s+ r = (a1M + rd1)a1 + (a1M + rd2)a2 + · · ·+ (a1M + rdn)an are positive and therefore
s + r ∈ 〈a1, . . . , an〉. Any integer x ≥ s can be written as x = qa1 + (s + r) with
r < a1 by letting q be the quotient of x−s

a1
and by letting r be the remainder. Now

qa1 ∈ 〈a1, . . . , an〉 by definition and we have shown (s + r) ∈ 〈a1, . . . , an〉, so the sum
x = qa1 +(s+r) is also in 〈a1, . . . , an〉. Since every integer x ≥ s is in 〈a1, . . . , an〉, there
are only finitely many positive integers not in 〈a1, . . . , an〉.

2. (a) We will try to keep adding smallest un-generated elements to our set of generators until
we get a set of generators that generate everything. To do this, let A0 = ∅. If S − 〈Ai〉
is nonempty, then let Ai+1 be Ai unioned with the smallest element of S−〈Ai〉. (Where
〈A〉 denotes the set of all N0-linear combinations of elements of A). If S−〈Ai〉 is empty,
then let Ai+1 = Ai.

First we claim that every integer in S that is less than i is in 〈Ai〉. We can show this by
induction. For the base case, every integer in S less than 0 is in 〈A0〉. For the inductive
step, suppose every integer in S that is less than i is in 〈Ai〉. We would like to show that
every integer in S that is less than i+ 1 is in 〈Ai+1〉. Since 〈Ai〉 ⊆ 〈Ai+1〉, every integer
in S that is less than i is already in 〈Ai+1〉. So we only need to show that if i ∈ S then
i ∈ 〈Ai+1〉. If i ∈ S and i ∈ 〈Ai〉, then i ∈ 〈Ai+1〉 and we are done. If i ∈ S and i /∈ 〈Ai〉,
then i is the smallest number in S − 〈Ai〉 and therefore i ∈ 〈Ai+1〉 by construction. So
we have proven the claim.

Let’s show that there is an n such that S = 〈An〉. To do this, let p < q be two
distinct primes in S (there are at least two distinct primes in S because all but finitely
many positive integers are in S). By our claim, p, q ∈ Aq+1. Since gcd(p, q) = 1, the
set 〈p, q〉 contains all but finitely many positive integers (we proved this in 1c). Since
〈p, q〉 ⊂ 〈Aq+1〉, this means that 〈Aq+1〉 contains all but finitely many positive integers.
In particular, S−〈Aq+1〉 is finite. So there is an integer n > q+ 1 that is bigger than all
the elements in S − 〈Aq+1〉. By our above claim, 〈An〉 contains all of S − 〈Aq+1〉. And
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since n > q + 1, 〈An〉 also contains all of 〈Aq+1〉. Therefore 〈An〉 ⊇ S. By construction,
〈An〉 ⊆ S. Therefore we have equality 〈An〉 = S as desired.

So now we have a set of integers An = a1, . . . , an with 〈a1, . . . , an〉 = S. We have
almost shown what we wanted. But we must still show that gcd(a1, . . . , an) = 1. To
do this, assume for a contradiction that gcd(a1, . . . , an) > 1. Let d = gcd(a1, . . . , an).
Then d > 1 divides everything in 〈a1, . . . , an〉, and so there are infinitely many positive
integers not in 〈a1, . . . , an〉. This is a contradiction and therefore gcd(a1, . . . , an) = 1.

(b) The An constructed above is the unique minimal generating set. To see this, let a1 <
a2 < . . . < aN be the elements of An and let b1 < b2 < . . . < bm be the elements of a
minimal generating set. We will prove that the sequences ai, bi are equal. First notice
that N ≥ m because b1, . . . , bm is a minimal generating set. We will therefore start by
showing that ai = bi for all i ≤ m.

Assume for a contradiction that there is some i ≤ m such that ai 6= bi. Let i be the
minimum such i. Since {b1, ..., bm} is minimal, bi /∈ 〈b1, . . . , bi−1〉. In other words,
bi ∈ S − 〈b1, . . . , bi−1〉.
Furthermore, we claim that bi is the smallest element in S − 〈b1, . . . , bi−1〉. To see
this, let r be the smallest element in S − 〈b1, . . . , bi−1〉. Then r is some nonnegative
linear combination of b1, . . . , bn involving at least one element past bi−1. If bi > r, then
all elements past bi−1 are greater than r and therefore r cannot be made with such a
nonnegative linear combination. Therefore bi ≤ r, forcing bi = r as desired. bi is the
smallest element in S − 〈b1, . . . , bi−1〉.
Since we chose i to be the minimum such that ai 6= bi, we know that 〈a1, . . . , ai−1〉 =
〈b1, . . . , bi−1〉. In particular, S − 〈b1, . . . , bi−1〉 = S − 〈a1, . . . , ai−1〉. So bi is the smallest
element in S − 〈a1, . . . , ai−1〉. But this is exactly how we defined ai! Therefore ai = bi,
contradicting our assumption that ai 6= bi.

So we have proven by contradiction that ai = bi for all i ≤ m. Since {b1, . . . , bm}
generates S, our construction of An stops adding elements once it gets to am. So the
sequence a1, . . . , aN actually has m elements and we are done.

3. (a) (i) Genus 8, Frobenius 13. (ii) Genus 4, Frobenius 5.

(b) Let N be any positive integer that is not in the semigroup. Then at least one number
from each of the the

⌊
N
2

⌋
pairs (1, N − 1), (2, N − 2), . . . , (

⌊
N
2

⌋
,
⌈
N
2

⌉
) must not be in

the semigroup. Also, N is not in the semigroup. So there are at least
⌊
N
2

⌋
+ 1 ≥ N+1

2

positive integers not in the semigroup. Ie, g(S) ≥ N+1
2 . Plugging in N = F (S), we get

g(S) ≥ F (S)+1
2 . Rearranging, F (S) ≤ 2g(S)− 1.

4. (a) F (〈a, b〉) = ab− a− b.
(b) We will use the following fact: If (x0, y0) is an integer solution to xa + yb = c, then

the set of integer solutions to xa+ yb = c is exactly the set of (x0 − kb, y0 + ka) for all
integers k.

To see that no nonnegative combination of a, b makes ab− a− b, notice that (b− 1,−1)
solves xa + yb = ab − a − b. So the set of all solutions is (b − 1 − kb,−1 + ka). For
solutions with k ≤ 0, we have y < 0. For solutions with k > 0 we have x < 0. Therefore
there are no nonnegative integer solutions. Ie, no nonnegative combination of a, b makes
ab− a− b.
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Now let N be any integer bigger than ab− a− b. Then the set

S = {N + b,N + b− a,N + b− 2a, . . . , N + b− (b− 1)a}

is a set of b positive integers because

N + b− (b− 1)a > ab− a− b+ b− (b− 1)a = 0.

Since gcd(a, b) = 1, none of the integers in this set may be congruent mod b. (If the i-th
and j-th terms are congruent mod b, then b | (N + b− ia)− (N + b− ja) so b | (j − i)a
so b | j − i, which implies i = j). Therefore we get all the integers {0, . . . , b − 1} by
reducing S mod b. In particular, there is an i-th term congruent to 0 mod b. This term
is divisible by b, so there is some j such that jb = N + b− ia. Since N + b− ia > 0, we
have j > 0 and in particular (j − 1) ≥ 0. So N = ia + (j − 1)b is a nonnegative linear
combination of a and b that makes N .

(c) First, we claim that for i = 1, . . . , a− 1, the smallest number congruent to ib modulo a
is ib. Any smaller number is writable as ax+ by where x, y ≥ 0 and y < i. This number
is congruent to by modulo a, so if it were also congruent to bi, we would have by ≡ bi
(mod a). But a is coprime to b, so this implies y ≡ i (mod a), a contradiction since
i < a implies i is the smallest positive number congruent to itself mod a.

Now, for any i = 1, . . . , a − 1, write ib = qia + ri where 0 ≤ ri < a (this is the result
of dividing ib by a and finding the quotient and remainder). Note that since by similar
reasoning as above, jb ≡ kb (mod a) =⇒ j = k when 0 ≤ j, k < a, so the ri cycle
through 1, . . . , a− 1 as i ranges from 1, . . . , a− 1.

The numbers congruent to ri mod a that are not in 〈a, b〉 are ri, a+ ri, . . . , (qi−1)a+ ri,
so there are precisely qi such numbers. Hence, the genus of 〈a, b〉 is precisely

∑a−1
i=1 qi

(we ignore the residue class of 0 modulo a since clearly all positive multiples of a are in
〈a, b〉). Now, use the fact that

a−1∑
i=1

ib =
ab(a− 1)

2
= a

a−1∑
i=1

qi +
a−1∑
i=1

ri = a
a−1∑
i=1

qi +
a(a− 1)

2
,

which implies that
a−1∑
i=1

qi =
(a− 1)(b− 1)

2
.

5. (a) (i) m(S) = 5, A(S) = {0, 7, 11, 14, 18}. (ii) m(S) = 3, A(S) = {0, 7, 8}.
(b) Let’s prove two statements: (1) every residue class mod m appears in A(S) (and it

appears as the smallest element of S in that residue class) and (2) no residue class mod
m appears more than once in A(S). It is obvious that the residue class 0 appears in
A(S), so we do not need to show that it appears in A(S).

To see (1), let k be any nonzero residue class mod m, and let x ∈ S such that x ≡ k
mod m. (Such an x exists because all numbers past some finite point are in S). By
integer division, there is some q so that 0 < x − qm < m. Since x − qm is a positive
integer smaller than the smallest positive integer in S, x − qm /∈ S. The sequence
x, x − m,x − 2m, . . . x − qm therefore starts with an element in S and ends up with
an element not in S. So there is some point in the sequence where x − im ∈ S and
x− (i+ 1)m /∈ S. Then x− im ∈ A(S) and therefore the residue class k mod m appears
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in A(S). Furthermore, x − im is the smallest element of S congruent to k because if
x− jm ∈ S for j > i then x− (i+ 1)m = (x− jm) + (j− i− 1)m ∈ S, contradicting the
fact that x− (i+ 1)m /∈ S.

To see (2), assume for a contradiction that x, y ∈ A(S) with x ≡ y mod m and x < y.
Then x ∈ S. Since x < y, there is some integer k ≥ 0 such that y − m = x + km.
So y − m ∈ S by additive closure. But y − m /∈ S because y ∈ A(S). So we have a
contradiction.

(c) It is sufficient to show that A(S) ∪ {m} generates S because removing 0 from a set of
generators does not change what it generates.

Since A(S) ∪ {m} ⊂ S, we have 〈A(S) ∪ {m}〉 ⊂ S.

To show the reverse inclusion, let x ∈ S. As in the previous proof, the sequence x, x −
m,x − 2m, . . . eventually hits an element of A(S). Thus x is an element of A(S) plus
some multiple of m. Ie, x ∈ 〈A(S) ∪ {m}〉.

(d) We claim that the set

T =
⋃

a∈A(S)

Ta =
⋃

a∈A(S)

{a− qm | q ≥ 1, a− qm > 0}

is exactly the set of positive integers not in S. Each element a− qm is not in S because
otherwise a−m = (a− qm) + (q−1)m ∈ S, contradicting the fact that a−m /∈ S. Each
positive integer x not in S is in T because eventually the sequence x, x+m,x+ 2m, . . .
hits some a ∈ A(S).

Since no elements of A(S) are congruent mod m, the sets Ta (for a ∈ A(S)) are disjoint.
So we can count T by counting each of the sets Ta. The size of Ta is clearly equal to its
corresponding Apéry coeffcient. Therefore

g(S) =

m−1∑
i=1

ki.

(e) Obviously maxi((ki − 1)m+ i).

6. (a) Suppose 1 ≤ i, j ≤ m− 1. Then kim+ i ∈ S and kjm+ j ∈ S so (ki +kj)m+ (i+ j) ∈ S
by additive closure. Therefore the smallest element of S congruent to i+ j mod m is at
most (ki +kj)m+ (i+ j). If i+ j < m, then the smallest element of S congruent to i+ j
mod m is ki+jm+ (i+ j) so we get the inequality ki+j ≤ ki + kj . If i+ j > m, then the
smallest element of S congruent to i+ j mod m is ki+j−mm+ (i+ j −m) so we get the
inequality ki+j−m − 1 ≤ ki + kj .

(b) Suppose k1, . . . , km−1 satisfy the inequalities given in part a. Let

A = {0, k1m+ 1, . . . km−1m+m− 1}.

Let S = 〈A ∪ {m}〉. We claim that A(S) = A. By 5b, we can do this by showing that
the smallest element congruent to i mod m is kim + i. So let x ∈ S be the smallest
element with x ≡ i mod m. Then x is a positive linear combination of the generators
in A ∪ {m}. We can write the positive linear combination as follows:

x = (kj1m+ j1) + . . .+ (kjnm+ jn) + cm
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for some sequence 1 ≤ j1, . . . , jn ≤ m− 1 (which might contain duplicate elements) and
some positive integer c. If c > 0, then x −m ∈ S is a smaller element with x −m ≡ i
mod m. So c = 0 and

x = (kj1m+ j1) + . . .+ (kjnm+ jn).

Reducing both sides mod m, we see that

i ≡ j1 + . . .+ jn mod m.

Therefore j1 + . . . + jn = i + qm for some q ≥ 0. Repeatedly applying the inequalities
to kj1 + . . .+ kjn , we get

kj1 + . . .+ kjn + q ≥ ki.

Multiplying both sides by m and adding j1 + . . .+ jn to both sides gives

kj1m+ j1 + . . .+ kjnm+ jn + qm ≥ kim+ j1 + . . .+ jn.

Move qm to the other side of the inequality and note that j1 + . . .+ jn − qm = i to get

kj1m+ j1 + . . .+ kjnm+ jn ≥ kim+ i.

The left side of this inequality is simply x, so we have x ≥ kim+ i. Now x is the smallest
element in S congruent to i, and kim+ i is an element in S congruent to i, so this forces
x = kim+ i as desired.

(c) By problem 5 part e, the Frobenius number of S is maxi((ki− 1)m+ i); in order to have
(ki − 1)m + i < 2m for all i, we must have all ki equal to 1 or 2. Furthermore, since
1 + 1 ≥ 2 and 1 + 1 + 1 ≥ 2, any such choice of ki automatically induces a valid Apéry
set. By problem 5 part d, we have g =

∑m−1
i=1 ki, so g − (m − 1) of the kis are 2s and

the rest are 1s. Hence there are
(
m−1
g−m+1

)
ways to choose those kis to set to 2, and thus(

m−1
g−m+1

)
distinct such numerical semigroups.

(d) We prove by induction on g that we have
∑g+1

m=1

(
m−1
g−m+1

)
= Fg+1, where the summand

is understood to be 0 if m− 1 < g −m+ 1, and F1 = F2 = 1. The base cases are easy
to check. Suppose this is true for g and g + 1; then we have

Fg+3 = Fg+1 + Fg+2 =

g+1∑
m=1

(
m− 1

g −m+ 1

)
+

g+2∑
m=1

(
m− 1

g −m+ 2

)

=

g+1∑
m=1

((
m− 1

g −m+ 1

)
+

(
m− 1

g −m+ 2

))
+

(
g + 1

0

)

=

g+1∑
m=1

(
m

g −m+ 2

)
+

(
g + 2

0

)
=

g+2∑
m=1

(
m

g −m+ 2

)

=

g+3∑
m=2

(
m− 1

g −m+ 3

)
=

g+3∑
m=1

(
m− 1

g −m+ 3

)
where we use Pascal’s Identity to get from the second line to the third, and the fact that(

1−1
g−1+3

)
= 0 (because 1− 1 < g− 1 + 3 for g > −2) for the last equality. So we are done.
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7. We claim that k1, . . . , km−1 define an MED semigroup if and only if the constraints in problem
6, part a hold without equality: that is, for any i, j ∈ {1, . . . ,m− 1}, we have ki + kj > ki+j
if i+ j < m, and ki + kj + 1 > ki+j−m if i+ j > m.

We first show that these conditions are necessary. Suppose one of the equalities from 6a holds.
We write B = {A(S)− {0}} ∪ {m}. We have two cases.

Case 1: there exist i, j ∈ {1, . . . ,m − 1} with i + j < m and ki + kj = ki+j . Then (kim +
i) + (kjm+ j) = (ki + kj)m+ i+ j = ki+jm+ (i+ j) ∈ B, so B \ {ki+jm+ i+ j} has m− 1
elements and also generates S.

Case 2: there exist i, j ∈ {1, . . . ,m − 1} with i + j > m and ki + kj + 1 = ki+j−m. Then
(kim + i) + (kjm + j) = (ki + kj + 1)m + i + j − m = ki+j−mm + i + j − m ∈ B, so
B \ {ki+j−mm+ i+ j −m} has m− 1 elements and also generates S.

Next we show that these conditions are sufficient. Specifically, we claim that if these conditions
are given, then for every q ∈ {1, . . . ,m− 1}, an element of 〈B \ {kqm+ q}〉 that is congruent
to q (mod m) must be greater than kqm+ q, so all elements of B are needed to generate S.

Take any x ∈ 〈B \ {kqm + q}〉, and let x =
∑n

i=1 ai where ai ∈ B \ {kqm + q} for all i. We
induct on n. We have two base cases: n = 1 is obvious, and n = 2 is true by our given
conditions: if i + j ≡ q (mod m) for some i, j ∈ {1, . . . ,m − 1}, then the inequalities tell us
that kim+ i+ kjm+ j > kqm+ q.

Now suppose for the sake of induction that our claim is true for n, and consider
∑n+1

i=1 bi ≡ q
(mod m), bi ∈ B \ {kqm+ q}. This can be written as

∑n−1
i=1 bi + bn + bn+1. Let bn + bn+1 ≡ c

(mod m) where c ∈ {1, . . . ,m − 1}. Then, by the given conditions, either one of bn, bn+1 is
kcm + c or bn + bn+1 > kcm + c—but we have bn + bn+1 > kcm + c in both cases. Hence∑n+1

i=1 bi >
∑n−1

i=1 bi + kcm + c > kqm + q by the inductive hypothesis. This completes the
induction.

8. (a) They are, in the standard order,

• 〈5, 6, 7, 8, 9〉, 4
• 〈4, 5, 7, 9〉, 5
• 〈4, 5, 7〉, 6
• 〈4, 5, 6〉, 7
• 〈3, 6, 7, 8〉, 5
• 〈3, 5〉, 7
• 〈2, 9〉, 7

(b) If you remove a generator from a numerical semigroup, then the result is still a numerical
semigroup because no two elements in a numerical semigroup can sum to a generator
(by our explicit algorithm for finding generators in problem 2). So all elements in the
tree are valid numerical semigroups.

Each numerical semigroup is its parent with one element removed, so the genus increases
by exactly one at each level of the tree. So by induction, the level is equal to the genus.

To see that we get every numerical semigroup, let S be any numerical semigroup. Let
a1 < a2 < . . . < an be all the elements of N0−S. I claim that the path starting at N0 and
proceeding by removing each of the ai’s in order is a valid path through the tree. We can
prove this by induction on the node in the path. The 0-th node N0 is at the root of the
tree, which establishes the base case. For the inductive step, let i ≤ n and assume that
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N0, N0−{a1}, ..., N0−{a1, . . . , ai−1} is a valid path through the tree. We need to show
that one may move from N0 − {a1, . . . , ai−1} to N0 − {a1, . . . , ai} along the tree. Ie, we
need to show that ai is a generator of N0−{a1, . . . , ai−1} that is greater than its Frobenius
number. If ai is not a generator, then some elements of N0 − {a1, . . . , ai−1} sum to it
and therefore ai cannot not be in S. Therefore ai is a generator of N0 − {a1, . . . , ai−1}.
ai is obviously bigger than the Frobenius number because the Frobenius number is ai−1.
So we are done. We can reach all numerical semigroups through the tree.

The above path is the only path from the root to S because the Frobenius number
constraint forces us to remove elements in increasing order. Therefore each numerical
semigroup appears exactly once.

(c) 〈2, 2g + 1〉 of genus g. To see this, we induct on g. The base case appears in the
diagram. For the inductive step, suppose 〈2, 2g + 1〉 of genus g is on the rightmost side
of the tree. Its child is 〈2, 2g + 1〉 − {2g + 1} of genus g + 1. It is easy to see that
〈2, 2g + 1〉 − {2g + 1} = 〈2, 2(g + 1) + 1〉, completing the inductive step.

(d) 〈g+ 1, . . . , 2g+ 1〉 of genus g. To see this, we induct on g. The base case appears in the
diagram. For the inductive step, suppose 〈g+ 1, . . . , 2g+ 1〉 of genus g is on the leftmost
side of the tree. Its leftmost child is 〈g+ 1, . . . , 2g+ 1〉−{g+ 1} = {g+ 2, g+ 3, . . . }. By
applying the algorithm we described in the solution to 2, we get that this has generators
{g + 2, . . . , 2(g + 1) + 1}, completing the inductive step.

9. Note: We use m below to denote m(S) = m(S′), which is valid because we are not in the
leftmost branch of the semigroup tree. Therefore, the Frobenius number of S is greater than
m(S). Otherwise, S must be of the form 〈g + 1, . . . , 2g + 1〉 where g is the genus of S. We
showed in 8d that such a semigroup must lie in the leftmost branch, and by 8b, this is the
only place in which it occurs.

(a) Suppose S has Frobenius number F and the generator F ′ > F is removed from S to give
S′. Then our answers are: (i) all generators except F ′; (ii) F ′; (iii) F ′+m if e(S) = e(S′),
otherwise none.

(b) Clearly all generators of S except F ′ are still generators of S′, since if they could not
be written in terms of other elements before, this will still not be possible when F ′

is removed. Now, note that a generator a of S′ cannot be larger than F ′ + m, since
otherwise we would have a−m > F ′, hence a−m ∈ S′ and a−m 6= 0, hence a would
be the sum of m and another nonzero element of S′. But if a < F ′ + m, and a is not
the sum of two nonzero elements of S′, note that a is also not the sum of F ′ and any
nonzero element of S (since the smallest such element is m) and consequently a is also a
generator of S. That is, all generators of S′, except possibly F ′+m, were also generators
of S. Thus we have e(S′) = e(S) if F ′ + m is a generator of S′, and e(S′) = e(S) − 1
otherwise.

10. (a) (i) 46. (ii) 12.

(b) The positive integers not in S, in terms of its Apéry coefficients, are just {1,m +
1, . . . , (k1 − 1)m + 1, 2,m + 2, . . . , (k2 − 1)m + 2, . . . ,m − 1,m + m − 1, . . . , (km−1 −
1)m+m− 1}. We have

ki−1∑
j=0

(jm+ i) = m ·
ki−1∑
j=0

j + iki = m · ki(ki − 1)

2
+ iki
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so the weight is
m−1∑
i=1

(
m · ki(ki − 1)

2
+ iki

)
.

(c) We extend the computations performed in Problem 4c. Recall that we wrote ib = aqi+ri
for i = 1, . . . , a− 1 and 0 ≤ ri < a. ri cycle through the numbers 1, . . . , a− 1 as i goes
from 1 to a− 1. Additionally, the numbers congruent to ri mod a that are not in 〈a, b〉
are precisely the qi numbers ri, a+ ri, . . . , (qi − 1)a+ ri.

From these preliminaries, we see that we wish to compute

a−1∑
i=1

qi−1∑
j=0

aj + ri =
a−1∑
i=1

qiri +
aqi(qi − 1)

2
.

Let S =
a−1∑
i=1

1

2
aq2i + qiri, so that the desired sum is

S − a

2

a−1∑
i=1

qi = S − a(a− 1)(b− 1)

4

by the computations in 4c.

Now, we write (ib)2 = (aqi + ri)
2 = a2q2i + 2aqiri + r2i and sum over i to get

b2
a−1∑
i=1

i2 =
b2a(a− 1)(2a− 1)

6
= 2aS +

a−1∑
i=1

r2i = 2aS +
a(a− 1)(2a− 1)

6
.

This implies S = (b2−1)(a−1)(2a−1)
12 . Plugging back in, we see that the weight of 〈a, b〉 is

(b2 − 1)(a− 1)(2a− 1)

12
− a(a− 1)(b− 1)

4
=

(a− 1)(b− 1)((b+ 1)(2a− 1)− 3a)

12

=
(a− 1)(b− 1)(2ab− a− b− 1)

12
.

11. (a) Suppose N0 \S = {1, 2, . . . ,m− 1,m+ i1, . . . ,m+ ig−m+1} with ia ∈ [1,m− 1] for all a.
We have

w = 1 + 2 + · · ·+m− 1 + (m+ i1) + · · ·+ (m+ ig−m+1)

− (1 + 2 + · · ·+m− 1 +m+ · · ·+ g)

=

g−m+1∑
a=1

(ia − a+ 1),

which can be rearranged as

w − (g −m+ 1) =

g−m+1∑
a=1

(ia − a).
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The ia − a are nonnegative because i1 ≥ 1 and ia > ia+1. They are non-decreasing
since ia+1 − (a + 1) ≥ ia + 1 − (a + 1) = ia − a. Finally, since m − 1 ≥ ig−m+1 and
ig−m+1 − (g − m + 1) ≥ ia − a, we have 2m − 2 + g ≥ ia − a. Thus each distinct
choice of these ia is associated with a unique partition of w − (g −m+ 1) into at most
g −m+ 1 parts, each of size at most 2m− 2− g. Furthermore, from any such partition
j1 + · · · + jg−m+1, where 0 ≤ j1 ≤ · · · ≤ jg−m+1, it is easy to reconstruct S by setting
ia = ja + a; the resulting ia will be strictly increasing and bounded above by m− 1, as
desired.

(b) Let N be the length of the hook associated with the top left square in the Ferrers-Young
diagram of λ. Then the walk described in the hint has N + 1 total steps; denote the
right steps by R and the up steps by U (so the first step is an R and the last step is
a U), and number the steps from 0 to N . Note that each pair of steps (i, i + j) where
i, j ≥ 0 and 0 ≤ i, i+ j ≤ N such that step i is an R and step i+ j is a U corresponds
uniquely to a hook of the diagram, with the length of the hook being j.

Suppose a, b ∈ N0 \Hλ but a + b ∈ Hλ, and choose i so that there is a hook of length
a + b beginning at step i and ending at step i + a + b (that is, there is an R step at i
and a U step at i + a + b). Since there is no hook of length a, step i + a cannot be a
U step (otherwise the pair (i, i + a) would give a hook of length a); hence step i + a is
an R step. But then the pair (i+ a, i+ a+ b) starts with an R step and ends with a U
step, hence gives a hook of length b, contradiction.

(c) Write N0 \ S = {n1 < · · · < ng}, and consider the Ferrers-Young diagram whose walk
along the bottom right edges (as described in the hint to part b) has ng + 1 steps, with
a U at steps n1, . . . , ng and an R everywhere else. By pairing the R at step 0 with the
Us at steps n1, . . . , ng, we can see that n1, . . . , ng ∈ Hλ. We need to check that if a ∈ S,
a /∈ Hλ.

Suppose to the contrary that for some a ∈ S there is a hook of length a; that is, there is
i so that there is an R at step i and a U at step i+ a. Then, by the construction of the
walk, i ∈ S and i+a ∈ N0 \S. But we assumed that a ∈ S, so i+a ∈ S, a contradiction.


