1. Answer: $\sqrt{51}$

Solution: Let $m \angle A=x$ and $m \angle B=y$. Note that we have two pairs of isosceles triangles, so $m \angle A=m \angle A C D$ and $m \angle B=m \angle B C D$. Since $m \angle A C D+m \angle B C D=m \angle A C B$, we have

$$
180^{\circ}=m \angle A+m \angle B+m \angle A C B=2 x+2 y \Longrightarrow m \angle A C B=x+y=90^{\circ} .
$$

Since $\angle A C B$ is right, we can use the Pythagorean Theorem to compute $B C$ as

$$
\sqrt{10^{2}-7^{2}}=\sqrt{51} .
$$

For a shortcut, note that D is the circumcenter of $A B C$ and lies on the triangle itself, so it must lie opposite a right angle.

2. Answer: $16 \sqrt{2}$

Solution: It turns out the rectangle is actually a square with side length $4 \sqrt{2}$, and hence has perimeter $16 \sqrt{2}$.
3. Answer: $\frac{\pi}{3}+1-\sqrt{3}$

Solution 1: Let O be the center of the circle, and let A and B lie on the circle such that $m \angle A O B=90^{\circ}$. Call M the midpoint of $A O$ and N the midpoint of $B O$. Let C lie on minor arc $A B$ such that $C M \perp O A$, and let D lie on minor arc $A B$ such that $D N \perp O B$. Finally, let $C M$ and $D N$ intersect at E. Now, the problem is to find the area of the region bounded by $D E, E C$, and minor arc $C D$.

Notice that $O N=1$ and $O D=2$, so $O N D$ is a 30-60-90 right triangle. Since $D N$ and $A O$ are parallel, $m \angle N D O=m \angle A O D=30^{\circ}$. We now see that the area of the region bounded by $A M$, $M E, E D$, and arc $D A$ can be expressed as the sum of the areas of triangle $O N D$ and sector $A O D$ minus the area of square $M O N E$, which evaluates to

$$
\frac{1}{2} \cdot 1 \cdot \sqrt{3}+\frac{\pi \cdot 2^{2}}{12}-1=\frac{\sqrt{3}}{2}+\frac{\pi}{3}-1 .
$$

Finally, let x denote the desired area. Then, the area of sector $A O B$ is

$$
1+2\left(\frac{\sqrt{3}}{2}+\frac{\pi}{3}-1\right)+x=\frac{\pi \cdot 2^{2}}{4} \Longrightarrow x=\frac{\pi}{3}+1-\sqrt{3} .
$$

Solution 2: When the pizza is sliced 4 times in both directions, the result is 4 unit squares, 8 congruent approximate quadrilaterals (one edge is curved), and 4 congruent approximate triangles (again, one edge is curved). Call the area of an approximate quadrilateral x and an approximate triangle y. Since all these pieces form a circle of radius 2 , we get

$$
8 x+4 y=4 \pi-4 \Longrightarrow 2 x+y=\pi-1
$$

Now, consider the long horizontal slice at the bottom of the pizza, consisting of 2 approximate quadrilaterals and 2 approximate triangles. Define the endpoints of the slice to be A and B. Define the center of the pizza to be C. Consider the sector of the pizza cut out by $A C$ and $B C$.

This is one third of the pizza, as $\angle A C B=120^{\circ}$, and $\angle A B C=\angle B A C=30^{\circ}$. Therefore, the area of the sector is $4 \pi / 3$ and the area of triangle $A B C$ is $\sqrt{3}$. Hence, we get

$$
2 x+2 y=\frac{4 \pi}{3}-\sqrt{3}
$$

Solving this system gives of equations gives $x=\frac{\pi}{3}-1+\frac{\sqrt{3}}{2}$ and $y=\frac{\pi}{3}+1-\sqrt{3}$ Therefore, the smallest piece of pizza has area $\frac{\pi}{3}+1-\sqrt{3}$.

4. Answer: $\frac{1}{4}$

Solution: First, note that the plane also passes through the midpoint of $B D$ by symmetry, e.g. across the plane containing $A D$ perpendicular to $B C$. Let M, N, O, and P denote the midpoints of $B A, A C, C D$, and $D B$, respectively. $M N=N O=O P=P M=\frac{1}{2}$ because they are all midlines of faces of the tetrahedron. Hence, the cross section is a rhombus. Furthermore, $M O \cong N P$ because both equal the distance between midpoints of opposite sides (alternatively, this congruence can be demonstrated by rotating $A B C D$ such that N and P coincide with the previous locations of M and O). Hence, $M N O P$ is a square, and its area is $\left(\frac{1}{2}\right)^{2}=\frac{1}{4}$.
5. Answer: $\frac{\sqrt{3}}{4}$

Solution: For any choice of E, we can draw the circumcircle of $P E Q$. Angle $P E Q$ is inscribed inside the minor arc of chord $P Q$, which is of constant length (it must always be the minor arc because $P E Q$ is clearly always acute). Therefore, maximizing $m \angle P E Q$ is equivalent to maximizing the measure of minor arc $P Q$, which in turn is equivalent to minimizing the radius of the circle.

Hence, we wish to find the smallest circle that intersects $A B C D$ at P, Q, and at least one other point. A circle of radius 1 can be tangent to sides $B C$ and $A D$, while a circle with a smaller radius clearly cannot touch any of the sides of the square. Hence, it is this circle we desire. Let this circle be centered at $O . O P Q$ is equilateral, so the height from O to $P Q$ has length $\frac{\sqrt{3}}{2}$. This is also the height from the points of tangency on $A D$ or $B C$ to $P Q$. E may be either one of these points, resulting in $P E Q$ having area $\frac{\sqrt{3}}{4}$.

6. Answer: $\frac{3-\sqrt{5}}{2}$

Solution: Let the radius of circle P be r. Draw $O P$, noting that it is perpendicular to $A T$ at T. Let Q be the point of tangency between circle O and $A D$. If we drop a perpendicular from P to meet $O Q$ (extended) at R, then we know that $O R=1-r$ and $O P=1+r$, so by the Pythagorean theorem, $P R=2 \sqrt{r}$. Thus, $A Q=2 \sqrt{r}+r$.
Let $A B$ be tangent to P at U. By the Two-Tangent Theorem, $A Q \cong A T \cong A U$. Since $U B=r$, we have

$$
(2 \sqrt{r}+r)+r=2 \Longrightarrow r=\frac{3-\sqrt{5}}{2} .
$$

7. Answer: 68

Solution 1: First, shift the coordinate system so that the line goes through the origin and the parabola is now at $x=y^{2}+4$.
Let $C D$ lie on the line $y=x+b$. The distance between lines $A B$ and $C D$ is therefore $\frac{|b|}{\sqrt{2}}$, which can be proven by drawing 45-45-90 triangles. This distance is precisely $A D=B C$, so $C D$ must also have this length. Hence, the y-coordinates of C and D must have difference $\frac{|b|}{2}$, again by 45-45-90 triangles.
Substituting $x=y-b$ to $x=y^{2}+4$ yields $y^{2}-y+(b+4)=0$. The difference between two solutions is $\sqrt{1-4(b+4)}=\frac{|b|}{2}$, which simplifies to $b^{2}+16 b+60=0$. The area of $A B C D$ is $\frac{1}{2} b^{2}$, so we want $\frac{1}{2}$ times the square of the possible values of b as our answer. We can compute this as $\frac{16^{2}-2 \cdot 60}{2}=68$.
Solution 2: Let $C=\left(y_{1}^{2}, y_{1}\right)$ and $D=\left(y_{2}^{2}, y_{2}\right)$, and assume without loss of generality that the points are positioned such that $y_{1}<y_{2}$. Viewing this in the complex plane, we have $B-C=(D-C) i$, so $B=\left(y_{1}^{2}+y_{1}-y_{2}, y_{2}^{2}-y_{1}^{2}+y_{1}\right)$. Plugging this into $y=x+4$ gives us $y_{2}^{2}-2 y_{1}^{2}+y_{2}-4=0$. Since $\overline{A B} \| \overline{D C}$, the slope of $\overline{D C}$ is 1 , so $\frac{y_{1}-y_{2}}{y_{1}^{2}-y_{2}^{2}}=1 \Longrightarrow y_{1}+y_{2}=1$. Solving this system of equations gives us two pairs of solutions for $\left(y_{1}, y_{2}\right)$, namely $(-1,2)$ and $(-2,3)$. These give $\sqrt{18}$ and $\sqrt{50}$ for $C D$, respectively, so the sum of all possible areas is $18+50=68$.

8. Answer: $\sqrt{46}$

Solution: Note that $B P=A P+C P$. To prove this, form equilateral triangle $A P D$ where D lies on the extension of $C P$. Then triangle $A C D$ is congruent to triangle $A B P$ (and can obtained by rotating triangle $A B P$ by 60 degrees). Therefore, $C D=A P+P C=B P$. Alternatively, apply Ptolemy's Theorem to cyclic quadrilateral $A B C P$, which gives $B P=A P+C P$ directly. Next, apply the Law of Cosines on triangle $A P C$ to deduce that $A P^{2}+C P^{2}+A P \cdot C P=6^{2}$ (we have used the fact that $m \angle A P C=120^{\circ}$, since it is opposite the 60° angle $A B C$). Hence, $(A P+C P)^{2}=36+10$ so $B P=A P+C P=\boxed{\sqrt{46}}$.
9. Answer: $\frac{\sqrt{35}}{72}$

Solution 1: First, we make some preliminary observations. Let M be the midpoint of $A B$ and N be the midpoint of $C D$. We see that I_{A} and I_{B} lie on isosceles triangle $A B N$, since $A N$ and $B N$ are angle bisectors of $\angle C A D$ and $\angle C B D$, respectively. This shows that $A I_{A}$ and $B I_{B}$ are coplanar, so they intersect. Moreover, by symmetry, X must lie on $M N$. Analogous facts hold for triangle $C D M$ and its associated points: in particular, Y also lies on $M N$.
Now, we use mass points to determine the location of X on $M N^{1}$ Let an ordered pair (m, P) denote that point P has mass m. Assume that masses a, b, c, and d at points A, B, C, and D, respectively, are placed such that their sum lies at X (that is, let X be our fulcrum).
Since

$$
(a+b+c+d, X)=(a, A)+((b, B)+(c, C)+(d, D)),
$$

it must be that

$$
(b, B)+(c, C)+(d, D)=\left(b+c+d, I_{A}\right),
$$

since I_{A} is the unique point in the plane of $B C D$ and collinear with X and A. This implies that $c=d$, since now $(c, C)+(d, D)$ must lie at the midpoint of $C D$, i.e. N. Now, since X lies on

[^0]$M N$, we know $(a, A)+(b, B)$ must lie at M, so $a=b$ as well. Finally, since I_{A} lies on the angle bisector of $\angle B C D$, we know that if $C I_{A}$ is extended to intersect $B D$ at a point Z, then
$$
\frac{B Z}{Z D}=\frac{B C}{C D}=\frac{5}{7} \Longrightarrow \frac{b}{d}=\frac{7}{5} .
$$

Hence, a suitable mass assignment is $a=b=7, c=d=5$. Now, we have that

$$
((7, A)+(7, B))+((5, C)+(5, D))=(14, M)+(10, N)
$$

is at X, and so $M X=\frac{5}{12} M N$.
By similar logic, when we pick Y to be the fulcrum, we get masses $a=b=5, c=d=4$, and so $M Y=\frac{4}{9} M N$. Hence,

$$
\frac{X Y}{M N}=\frac{4}{9}-\frac{5}{12}=\frac{1}{36} .
$$

Finally, to compute $M N$, we start by noting that

$$
C M=\sqrt{5^{2}-2^{2}}=\sqrt{21}
$$

by the Pythagorean Theorem in right triangle $A M C$. Now, looking at right triangle $M N C$, we get

$$
M N=\sqrt{21-\left(\frac{7}{2}\right)^{2}}=\frac{\sqrt{35}}{2} \Longrightarrow X Y=\frac{\sqrt{35}}{72}
$$

Solution 2: We present a variant of the first solution that does not require using mass points in three dimensions. Instead, we will use mass points on the triangle $A B N$. Let X be our fulcrum. Recall that $A X I_{A}$ are colinear. We need to compute $\frac{B I_{A}}{I_{A} N}$, which we can do by the Angle Bisector Theorem in triangle $B C D$. Since $C X_{A}$ bisects angle $B C D$, we have $\frac{B I_{A}}{I_{A} N}=\frac{C B}{C N}=\frac{10}{7}$. Therefore, we can assign a mass of 10 to N and 7 to A. By symmetry, B also gets a mass of 7 , so $\frac{M X}{M N}=\frac{10}{7+7+10}=\frac{5}{12}$, as before. This computation extends to get $\frac{M Y}{M N}=\frac{4}{9}$.
Using these ratios, the final answer can be computed as in Solution 1.

10. Answer: $\frac{5 \sqrt{1023}}{4}$

Solution: We first prove a lemma. Let M be the midpoint of $A B$ and N be the midpoint of $E F$. Then $K L M N$ is a square. We do this using vectors. Let $v_{1}=\overrightarrow{C A}, v_{2}=\overrightarrow{B A}, u_{1}=\overrightarrow{C D}$, and $u_{2}=\overrightarrow{B F}$. We first calculate $w=\overrightarrow{E F}$. Then $w=\left(v_{1}-v_{2}+u_{2}\right)-\left(u_{1}+v_{1}\right)=u_{2}-v_{2}-u_{1}$. Now, we calculate $\overrightarrow{C N}$ in two different ways. First, $\overrightarrow{C N}=u_{1}+v_{1}+\frac{w}{2}=v_{1}+\frac{u_{2}}{2}+\frac{u_{1}}{2}-\frac{v_{2}}{2}$. Second, $\overrightarrow{C N}=v_{1}-\frac{v_{2}}{2}+\overrightarrow{M N}$. Equating these two gives us $\overrightarrow{M N}=\frac{u_{2}+u_{1}}{2}$. Taking the dot product of $\overrightarrow{M N}$ with $\overrightarrow{C B}=v_{1}-v_{2}$ gives $\frac{v_{1} \cdot u_{2}-v_{2} \cdot u_{1}}{2}$, which is zero. In addition, note that u_{1}, u_{2} are rotations of v_{1}, v_{2} such that the angle between v_{1} and v_{2} is supplementary to the angle between u_{1} and u_{2}. Hence, the length of $\overrightarrow{M N}$ is the same as the length of $\overrightarrow{L M}=\frac{v_{1}-v_{2}}{2}$. A similar argument on $\overrightarrow{L K}$ gives the same result, and hence $K L M N$ is a square.
Now, we see that $L K=\frac{1}{2} B C$. Symmetrically, $L J=\frac{1}{2} A B$. Furthermore, angle $K L J$ is supplementary to angle $A B C$. Hence, the area of triangle $J K L$ is a quarter of the area of triangle $A B C$, and so is the area of a triangle with side lengths half those of $A B C$'s. The area of $J K L$ may thus be calculated with Heron's formula:

$$
\sqrt{\frac{31}{2} \cdot \frac{15}{2} \cdot \frac{11}{2} \cdot \frac{5}{2}}=\frac{5 \sqrt{1023}}{4} .
$$

[^0]: ${ }^{1}$ For a rigorous introduction to mass points, we direct the interested reader to http://www. computing-wisdom. com/jstor/center_of_mass.pdf

