1. Compute $\lim _{x \rightarrow 3} \frac{x^{2}+2 x-15}{x^{2}-4 x+3}$.
2. Compute all real values of b such that, for $f(x)=x^{2}+b x-17, f(4)=f^{\prime}(4)$.
3. Suppose a and b are real numbers such that

$$
\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{e^{a x}-b x-1}=\frac{1}{2} .
$$

Determine all possible ordered pairs (a, b).
4. Evaluate $\int_{0}^{4} e^{\sqrt{x}} d x$.
5. Evaluate $\lim _{x \rightarrow 0} \frac{\sin ^{2}(5 x) \tan ^{3}(4 x)}{(\log (2 x+1))^{5}}$.
6. Compute $\sum_{k=0}^{\infty} \int_{0}^{\frac{\pi}{3}} \sin ^{2 k} x d x$.
7. The function $f(x)$ has the property that, for some real positive constant C, the expression

$$
\frac{f^{(n)}(x)}{n+x+C}
$$

is independent of n for all nonnegative integers n, provided that $n+x+C \neq 0$. Given that $f^{\prime}(0)=1$ and $\int_{0}^{1} f(x) d x=C+(e-2)$, determine the value of C.
Note: $f^{(n)}(x)$ is the n-th derivative of $f(x)$, and $f^{(0)}(x)$ is defined to be $f(x)$.
8. The function $f(x)$ is defined for all $x \geq 0$ and is always nonnegative. It has the additional property that if any line is drawn from the origin with any positive slope m, it intersects the graph $y=f(x)$ at precisely one point, which is $\frac{1}{\sqrt{m}}$ units from the origin. Suppose further that f has a unique maximum value at some real number $x=a$. Find $\int_{0}^{a} f(x) d x$.
9. Evaluate $\int_{0}^{\pi / 2} \frac{d x}{(\sqrt{\sin x}+\sqrt{\cos x})^{4}}$.
10. Evaluate $\lim _{n \rightarrow \infty}\left[\left(\prod_{k=1}^{n} \frac{2 k}{2 k-1}\right) \int_{-1}^{\infty} \frac{(\cos x)^{2 n}}{2^{x}} d x\right]$.

