1. Answer: 15

Solution: Let d be the length of one lap in miles. Then he needs to complete the four laps in $\frac{4 d}{10}=\frac{2 d}{5}$ hours. He has already spent $\frac{3 d}{9}=\frac{d}{3}$ hours on the first three laps, so he has $\frac{2 d}{5}-\frac{d}{3}=\frac{d}{15}$ hours left. Therefore, he must maintain a speed of 15 mph on the final lap.
2. Answer: $\frac{10}{11}$

Solution: After removing x from 10, and then increasing that amount by 10%, we must end up with at least the amount we started with, 10 pounds. That is, the maximum value of x must satisfy $\frac{11}{10}(10-x)=10$. Solving for x, we get that $x=\frac{10}{11}$.

3. Answer: 8960

Solution: All of Karl's favorite quadratics take the form $(x-r)(x-17)$, where $0 \leq r \leq 34$. The sum of the coefficients of any polynomial can be determined by evaluating the polynomial at $x=1$. This gives $16 r-16$. $\sum_{r=0}^{34}(16 r-16)=16 \cdot \frac{34 \cdot 35}{2}-16 \cdot 35=8960$.

4. Answer: $\frac{68}{3}$

Solution: Substituting $x=2$, we get that $f(2)+2 f(6)=4$. Substituting $x=6$, we get that $f(6)+2 f(2)=36$. Solving for $f(2)$ and $f(6)$ gives us that $f(6)=-\frac{28}{3}$ and $f(2)=\frac{68}{3}$.

5. Answer: 168

Solution: We have that b is a valid number if and only if $\left(x^{2}+2 x+3\right)-(b x-17)=x^{2}+(2-b) x+20$ has exactly one real root. This means that $2-b= \pm 2 \sqrt{20}$, so $b=2 \pm 2 \sqrt{20} . b_{1}^{2}+b_{2}^{2}$ is therefore $2\left(2^{2}\right)+2(2 \sqrt{20})^{2}=8+160=168$.
6. Answer: $\frac{1+\sqrt{13}}{2}$

Solution: Note that $x^{4}-x^{3}-5 x^{2}+2 x+6=\left(x^{4}-5 x^{2}+6\right)-x\left(x^{2}-2\right)=\left(x^{2}-2\right)\left(x^{2}-3\right)-x\left(x^{2}-2\right)=$ $\left(x^{2}-2\right)\left(x^{2}-x-3\right)$. The two largest candidate roots are therefore $\sqrt{2}$ and $\frac{1+\sqrt{13}}{2}$. Note that $\sqrt{13}>3$, so $\frac{1+\sqrt{13}}{2}>2>\sqrt{2}$, so therefore the largest root is $\frac{1+\sqrt{13}}{2}$.
7. Answer: $\frac{546}{5}$

Solution: Observe that $f(a)=\sqrt[3]{20 x+a}$ is an increasing function in a, so the only way that $f(f(a))=a$ can be true is if $f(a)=a$. Solving $\sqrt[3]{20 x+13}=13$, we obtain $x=\frac{546}{5}$.
8. Answer: - 11/3

Solution: Let $f(x)=4 x^{2}+15 x+17, g(x)=x^{2}+4 x+12$, and $h(x)=x^{2}+x+1$. Then, the
given equation becomes

$$
\begin{aligned}
& \frac{f(x)}{g(x)}=\frac{f(x)+h(x)}{g(x)+h(x)} \\
& \Longrightarrow f(x) g(x)+f(x) h(x)=f(x) g(x)+g(x) h(x) \\
& \Longrightarrow f(x) h(x)=g(x) h(x) .
\end{aligned}
$$

Since $h(x)>0$ for all real x, we may divide through by $h(x)$ to get

$$
\begin{aligned}
f(x) & =g(x) \\
& \Longrightarrow 4 x^{2}+15 x+17=x^{2}+4 x+12 \\
& \Longrightarrow 3 x^{2}+11 x+5=0 .
\end{aligned}
$$

The discriminant of this quadratic is

$$
11^{2}-4 \cdot 3 \cdot 5=61>0
$$

so it has two real roots. By Vieta's, the sum of these roots is $-11 / 3$.

9. Answer: 30

Solution: Putting everything over a common denominator, we can rewrite the expression as

$$
\frac{a^{4}(b-c)-b^{4}(a-c)+c^{4}(a-b)}{(a-b)(a-c)(b-c)}=\frac{a^{4} b-a b^{4}-a^{4} c+a c^{4}+b^{4} c-b c^{4}}{(a-b)(a-c)(b-c)} .
$$

Notice that if $a=b$, the numerator becomes $a^{5}-a^{5}-a^{4} c+a c^{4}+a^{4} c-a c^{4}=0$; similarly if $a=c$ or $b=c$. This means that the numerator is in fact divisible by $(a-b)(a-c)(b-c)$. Factoring, we find that the above expression is equal to

$$
\frac{(a-b)(b-c)(a-c)\left(a^{2}+b^{2}+c^{2}+a b+b c+a c\right)}{(a-b)(b-c)(a-c)}=a^{2}+b^{2}+c^{2}+a b+b c+a c
$$

as long as the original expression was well-defined. But we have

$$
a^{2}+b^{2}+c^{2}+a b+b c+a c=\frac{1}{2}\left((a+b)^{2}+(b+c)^{2}+(c+a)^{2}\right)
$$

and plugging in the given values of a, b, c gives

$$
\frac{1}{2}\left((2 \sqrt{7})^{2}+(2 \sqrt{3})^{2}+(2 \sqrt{5})^{2}\right)=2(7+3+5)=30
$$

10. Answer: 6, $\frac{-1 \pm \sqrt{13}}{2}$

Solution: First of all, if $z=1$, then the expression is simply equal to 6 . Otherwise, let $\omega=z+z^{3}+z^{4}+z^{9}+z^{10}+z^{12}$. We find that
$\omega^{2}=z^{2}+z^{6}+z^{8}+z^{5}+z^{7}+z^{11}+2\left(z^{4}+z^{5}+z^{10}+z^{11}+1+z^{7}+z^{12}+1+z^{2}+1+z+z^{3}+z^{6}+z^{8}+z^{9}\right)$.
Applying the identity $z+z^{2}+z^{3}+\cdots+z^{12}=-1$, we arrive at $\omega^{2}=-1-\omega+2(3-1)=3-\omega$,
and the solutions to the quadratic are $\omega=\frac{-1 \pm \sqrt{13}}{2}$.

