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1. Answer: 1500

Solution: There are
(
5
3

)
possibilities for the range, so the answer is 10N where N is the number of sur-

jective functions from {1, 2, 3, 4, 5} to a given 3-element set. The total number of functions {1, 2, ..., 5} →
{1, 2, 3} is 35, from which we subtract

(
3
2

)
(the number of 2-element subsets of {1, 2, 3}) times 25 (the num-

ber of functions mapping into that subset), but then (according to the Principle of Inclusion-Exclusion)
we must add back

(
3
1

)
(the number of functions mapping into a 1-element subset of {1, 2, 3}. Thus:

N = 35 −
(
3
2

)
(25) +

(
3
1

)
(15) = 150. So 10N = 10(150) = 1500 .

2. Answer: 2, 6, 8, 10

Solution: We consider the value {kn} (mod 12) for k = 0, 1, . . . , 11 and n = 1, 2, 3.

n = 1 : {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}

n = 2 : {0, 1, 4, 9, 4, 1, 0, 1, 4, 9, 4, 1}

n = 3 : {0, 1, 8, 3, 4, 5, 0, 7, 8, 9, 4, 11}

All values of k have period 1 or 2 (the rows for 2 and 8 continue 4, 8, 4, 8, etc.) We can see that nn cannot
be congruent to 2, 6, 10 when divided by 12 for n > 1, and hence cannot be congruent to 2, 6, 10 at all.
For nn to be congruent to 8 (mod 12), we would need either n ≡ 2 (mod 12) and n ≡ 1 (mod 2) or
n ≡ 8 (mod 12) and n ≡ 1 (mod 2); this is impossible since a number which is 2 or 8 (mod 12) must be
even. All other remainders indeed occur; this can be checked by inspection, with the help of the Chinese
Remainder Theorem. So our answer is 2, 6, 8, 10 .

3. Answer: 9
2
a1a2a3

Solution: Let the x, y, and z intercepts of the plane be b1, b2, and b3, respectively. The tetrahedron
in question has volume 1

6b1b2b3. The equation of our plane must then be x
b1

+ y
b2

+ z
b3

= 1, since these

three intercepts determine the plane. Therefore, we are minimizing 1
6b1b2b3 subject to the constraint

a1
b1

+ a2
b2

+ a3
b3

= 1. By AM-GM, we get that

a1a2a3
b1b2b3

≤
( a1
b1

+ a2
b2

+ a3
b3

3

)3

=
1

27
.

Therefore, b1b2b3 ≥ 27a1a2a3 with equality if

a1
b1

=
a2
b2

=
a3
b3

=
1

3
,

which is a reasonable condition. Hence, the desired minimum volume is 27a1a2a3
6 =

9

2
a1a2a3 .

4. Answer: 811641

Solution: By taking tangents to both sides we have

1

k
=

1/x+ 1/y

1− 1/xy
=

x+ y

xy − 1
,

so xy = k(x + y) + 1, (x − k)(y − k) = k2 + 1. For k = 2012 the second largest factor of k2 + 1 is

(k2 + 1)/5 = 809629 and thus second largest integer y is k + 809629 = 811641 .

5. Answer: 9
√

3
8

Solution: By symmetry, E[(BiAi+1Bi+1)] = E[(BjAj+1Bj+1)] for all integers i and j. Therefore, apply-
ing linearity of expectation, the expected area of B1B2B3B4B5B6 is equal to the area of A1A2A3A4A5A6

minus six times the expected area of B1A2B2. Since the lengths of B1A2 and B2A2 are independent, this
expectation is equal to ( 1

2 sin 120◦)E[B1A2]E[B2A2]. It is easy to see that E[B1A2] = E[B2A2] = 1/2, so
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E[(A1B2A2)] =
√
3

16 . The area of a unit regular hexagon is 6(
√
3
4 ), so our answer is 6(

√
3
4 −

√
3

16 ) =
9
√

3

8
.

Alternatively, since the area of B1B2B3B4B5B6 is linear in location of Bi for each i, and Bi are all
independent, we can argue that the average cases comes when Bi all all midpoints.

6. Answer: 2

Using the partial fraction
1

m(n+m+ 1)
=

1

n+ 1

(
1

m
− 1

n+m+ 1

)
we can sum the series in m first, then it is

∞∑
n,m=1

1

nm(n+m+ 1)
=

∞∑
n=1

1

n(n+ 1)
(
1

1
+

1

2
+ · · · 1

n+ 1
)

=
∑

k≤n+1

1

kn(n+ 1)
=

∑
k≤n+1

1

k

(
1

n
− 1

n+ 1

)
.

Now we sum this series in k first. For k = 1, n starts from 1, and for other values of k, n starts from
k − 1. Noting that each of these sums telescope,

=

∞∑
n=1

(
1

n
− 1

n+ 1

)
+

∞∑
k=2

1

k

∞∑
n=k−1

(
1

n
− 1

n+ 1

)

= 1 +

∞∑
k=2

1

k(k − 1)
= 1 +

∞∑
k=2

(
1

k − 1
− 1

k

)
= 1 + 1 = 2 .

7. Answer: 1161

Solution: There are 34 = 81 different cards. Any choice of two cards determines a unique line, since if we
know ai and bi, ci must equal ai, bi if ai = bi and must equal neither if ai 6= bi. If we choose two distinct
cards, we produces 1

3

(
81
2

)
distinct lines since each line can be generated by 3 pairs of cards. To this, we add

81 lines that are generated by choosing the same card three times (notice that if two cards in a line are the

same the last card must also be the same). Therefore, our final answer is 1
3

(
81
2

)
+81 = 27·40+81 = 1161 .

8. Answer: ee
100 − e

Solution: Let x(t) and be the position of the ant. Since the length of the rubber band equals 100t+100e

and the rubber band stretches uniformly, any point on the rubber band will have velocity x(t)
100t+100e100.

Thus, the total velocity of the bug equals x′(t) = x(t)
100t+100e100 + 1

ln t+e . Dividing by t+ e and rearranging

yields d
dt (

x(t)
t+e ) = 1

(t+e) ln t+e . This integrates to x(t) = (t + e)C1 + (t + e) ln (ln (t+ e)), where C1 = 0

from the initial conditions. The ant reaches the sadistic child when x(t) = 100t + 100e, at which point

ln (ln (t+ e)) = 100 or equivalently t = ee
100

− e .

9. Answer: 1989

Solution: For notational convenience, let ` be the line passing through the origin and (1984, 2012).

First, note that a point P can only be nearby the give line segment if its x-coordinate is between 0 and
1984, inclusive. If the x-coordinate of P is negative, its distance to any point on the line segment is less
than the distance between that point on the line segment and the point one unit to the right of P ; if P
has x-coordinate greater than 1984, take the point one unit to the left. This inequality holds due to the
creation of a right or obtuse angle between P , the point next to P , and any point on the line segment
(the edge case where the three points are collinear remains, but this is easily checked separately).

Now, fix a value x ∈ {0, 1, . . . , 1984}, and let S be the set of lattice points with that x coordinate. Let Q
be the point on the line segment with this x-coordinate. Note that for any P ∈ S, the distance between
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P and the line segment is either the distance from P to ` or the distance from P to one of the endpoints
of the line segment. In the latter case, since there always exists a cardinal direction to move closer to
a given point, P is not nearby our segment. Now consider the former case. By similar triangles, the
distance between P and ` is proportional to PQ, and so the only P which could possibly be nearby the
segment are the P closest to Q. There are two such points if the y-coordinate of Q has fractional part
1/2, and one such point otherwise.

Finally, we show that all such points are in fact nearby: this relies on the fact that the slope of ` is
greater than 1. Consider a point P that is no further from ` than any other lattice point with the same
x-coordinate. We already know that its distance to Q, the point on the line with same x-coordinate, is
less than or equal to 1/2. Now draw the horizontal line through P , intersecting ` at R. Since the slope
of ` is greater than 1, we have PR < PQ ≤ 1/2, and so P is, out of all lattice points with the same y
coordinate, the closest one to `. Hence, it is a nearby point.

Now, we just need to count the number of nearby points. There are 1985 different valid choices of x-
coordinate, and we must double-count all the ones for which the point on ` with that x-coordinate has
y-coordinate with real part 1/2. Since ` is given by

y =
2012

1984
x =

503

496
x,

this condition holds when x ≡ 248 (mod 496), so there are 4 such values in the relevant interval. Hence,

report 1989 .

10. Answer: 1
31752

Solution: 1 must be the first number in the permutation, which happens with probability 1
14 . The

probability for 2 to come before 4, 5, 8, 9 10, and 11 is 1
7 . Similarly, 3 coming before 6, 7, 12, 13, and 14

happens with probability 1
6 . 4 before 8 and 9 with probability 1

3 . 5 before 10 and 11 with probability 1
3 .

6 before 12 and 13 with probability 1
3 . 7 before 14 with probability 1

2 . All these events are independent,

so the answer is the product of the above probabilities, or
1

31752
.

11. Answer: (27,+∞)

Solution: We make the following modifications to the numerator: since xyz = 1, we may multiply
x−3, y−3, z−3 by x3y3z3, and also add −1 + x3y3z3. The numerator then factors as −1 + x3 + y3 +
z3 − x3y3 − x3z3 − y3z3 + x3y3z3 = (x3 − 1)(y3 − 1)(z3 − 1). Similarly, the denominator factors as
(x−1)(y−1)(z−1), so that the expression can be rewritten as (x2+x+1)(y2+y+1)(z2+z+1). Dividing

this by xyz and writing z = 1/(xy), we find that this is in fact
(
1 + x+ 1

x

) (
1 + y + 1

y

)(
1 + xy + 1

xy

)
.

For any a > 0, we can expand (a − 1)2 ≥ 0 to obtain a + 1/a ≥ 2, so the product has value at least
(1 + 2)(1 + 2)(1 + 2) = 27. Equality cannot occur: this would require x = y = z = 1, making the original
denominator zero. Everything larger than 27 can occur, however: we simply consider the special case
y = x, when the expression reduces to

(
1 + x+ 1

x

) (
1 + x+ 1

x

) (
1 + x2 + 1

x2

)
, a continuous function of x

which is unbounded as x→ +∞. Thus we answer (27,+∞) .

12. Answer: 12 + 6
√
3

Solution: We begin by computing the angles of the triangle; repeated application of the Law of Cosines
gives us that the angles of the triangle are 15◦, 60◦, and 105◦, with greatest common divisor of 15◦. Given
any triangle whose vertices coincide with the vertices of a regular n-gon, the smallest possible angle in
the triangle is π

n . Thus a dodecagon with side length
√

2 is the smallest regular polygon that satisfies
our current constraints. The area of a regular n-gon with side length s is n

4 cot
(
π
n

)
s2. Using the sine

and cosine half-angle formulas, we find that sin
(
π
12

)
=

√
1
2 −

√
3
4 , cos

(
π
12

)
=

√
1
2 +

√
3
4 , and therefore

cot
(
π
12

)
= 2 +

√
3. Therefore, the area of our regular dodacegon is 3 cot

(
π
12

)
(
√

2)2 = 12 + 6
√

3 .
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13. Answer: 20

Solution: Denote gcd(x, y) by (x, y). Let P represent the property of n such that n | a2b+1⇒ n | a2 + b
for all a, b ∈ N. Let Q represent the property of n such that (a, n) = 1 ⇒ n | a4 − 1 for all a ∈ N. We
shall prove that they are equivalent.

Proof that P ⇒ Q: Let a be a positive integer with (a, n) = 1 and hence (a2, n) = 1. By Bzout’s identity,
we can find b ∈ N such that n | a2b + 1. By P, n | a2 + b. Then a4 − 1 = a2(a2 + b) − (a2b + 1), so
n | a4 − 1.

Proof that Q ⇒ P: Let a, b be positive integers with n | a2b+ 1. Clearly (a, n) = 1, so n | a4 − 1. Using
a2(a2 + b) = (a4 − 1) + (a2b+ 1) and the fact that a and n are relatively prime, n | a2 + b.

Now we wish to find all n with property Q. If a is odd, we have a4−1 = (a2−1)(a2 +1), a2 ≡ 1 (mod 8),
and a2 + 1 is even, so 16 | a4 − 1. If (a, 3) = 1, we have a2 ≡ 1 (mod 3), so 3 | a4 − 1. If (a, 5) = 1, we
have 5 | a4 − 1 by Fermat’s Little Theorem. This argument shows that n | 240 is sufficient.

To show n | 240 is necessary, suppose n has property Q, and let n = 2a · k, where k is odd. If k > 1, then
(k− 2, n) = 1, so by Q we conclude that n | (k− 2)4− 1. Then k | (k− 2)4− 1, but (k− 2)4 ≡ (−2)4 ≡ 16
(mod k), so k | 15. Now, since (11, n) = 1, n | 114 − 1, then 2a | 114 − 1, resulting in a ≤ 4. Thus n | 240
is also necessary.

The number of natural numbers n such that property P holds is simply the number of positive integer
divisors of 240, which is (4 + 1)(1 + 1)(1 + 1) = 20 .

14. Answer: (−1,−1/2)
Solution 1: Take x = 1/n. Using the Taylor expansion log(1− x) = −x− x2/2− x3/3− · · · ,

F (x) = e(1− x)1/x = exp

(
1 +

log(1− x)

x

)
= exp

(
−x

2
− x2

3
− x3

4
· · ·
)
.

Since F (0) = 1, when α = −1 the limit can be represented as derivative of F as:

lim
n→∞

e
(
1− 1

n

)n − 1

1/n
= lim
x→0

F (x)− F (0)

x
= F ′(0) = −1

2
.

15. Answer: e−1+
√

1+2 ln(2)2

Solution: First, note that for fixed a, b, m, and n, f(a, b,m, n) = f(a, b,m/2, n) = f(a, b,m, n/2) because
we can go from an optimal sheet folding in one case to an optimal sheet folding in another case by either
folding or unfolding the sheet in half, which scales the sheet’s folded area by the same amount as the box’s
cross-sectional area. This implies that we can tile the region m ∈ (0, a), n ∈ (0, a) with an infinite number
of rectangles for which the expectation of f is the same inside each rectangle. In particular, the set R
of these rectangles is the set of all rectangles bounded by points of the form ( a2x ,

a
2y ) and ( a

2x+1 ,
a

2y+1 ) in
mn-space for nonnegative integers x and y. The expectation of f over the whole region is the same as
the expectation of f inside any one of these rectangles. Let us choose to examine the rectangle where
we have m ∈ [a/2, a), n ∈ [a/2, a). Clearly, it is optimal to fold the sheet exactly once in the dimension
where the sheet has length a. For the other dimension, we may assume that b ∈ [a, 2a) because if b ≥ 2a,
we are forced to fold it anyways until b < 2a. Now, we only have to fold in the b dimension once if
b/2 < max(m,n), and otherwise we must fold twice. Therefore, the expected value of f is equal to

4

a2

∫ a

a/2

∫ a

a/2

(a/2)(b/2)(1/2)H(b/2−max(m,n))

mn
dmdn,

where H(x) is the Heaviside Step Function (defined as H(x) = 1 if x ≥ 0 and 0 otherwise).

We can compute this integral by noticing that it is equal to

4

a2

(∫ a

a/2

∫ a

a/2

ab/4

mn
dmdn−

∫ b/2

a/2

∫ b/2

a/2

ab/8

mn
dmdn

)
.
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Hence, this problem relies on evaluating∫ d

c

∫ d

c

1

xy
dx dy =

∫ d

c

ln(d)− ln(c)

y
dy = (ln(d)− ln(c))2 = ln(d/c)2.

Plugging in, we get that the original integral equals

4

a2
((ab/4) ln(2)2 − (ab/8) ln(b/a)2) =

b

2a
(2 ln(2)2 − ln(b/a)2).

Let k = b/a, so that the expectation we are maximizing is g(k) = k
2 (2 ln(2)2 − ln(k)2) over the domain

k ∈ [1, 2). The derivative of g is

g′(x) =
1

2
(2 ln(2)2 − ln(k)2)− ln k = −1

2
(ln(k)2 + 2 ln(k)− 2 ln(2)2),

which we set to zero, which yields

ln(k) =
−2±

√
4 + 8 ln(2)2

2
= −1±

√
1 + 2 ln(2)2.

We now need to check two final things. First, we must see if either of these solutions to g′(k) = 0 are
in the interval (1, 2). Only the positive solution to the above quadratic could possibly result in k being
in greater than 1 to begin with. The easiest way to see that this gives us a value in the interval (1, 2) is
by noticing that g(1) = g(2) = ln(2)2 (since the k = 1 and k = 2 cases both result in the folded sheet
having the same area, namely a/2 × a/2, for all choices of m and n), so we are guaranteed a point with
zero derivative in the interval (1, 2) by Rolle’s Theorem.

Additionally, we must check that this is a local maximum and not a minimum. We claim here that g(k)
is concave down on the interval (1, 2), so what we have found is a local maximum. First, ln(k)2 is concave
up on (1, 2) because

d2

dk2
ln(k)2 =

2− 2 ln(k)

k2
,

which is positive when ln(k) < 1 ⇐⇒ k < e. Hence, 2 ln(2)2 − ln(k)2 is concave down in the same
interval. It is also clearly decreasing. Finally, we have for generic functions f and g that if f(x) = xg(x),
then f ′(x) = g(x) + xg′(x) and f ′′(x) = 2g′(x) + xg′′(x), so on an interval where g is decreasing, concave
down, and x is positive, then f is guaranteed to also be concave down. This scenario holds for our function
g(k), so it is concave down.

Hence, report e−1+
√

1+2 ln(2)2 .


