1. Answer: $\frac{250}{3}$

Solution: This integral is equal to

$$
\int_{-5}^{5} x+x^{2}+x^{3} d x=\int_{-5}^{5} x^{2} d x=\left(\frac{5^{3}}{3}-\frac{(-5)^{3}}{3}\right)=\frac{250}{3}
$$

2. Answer: 20

Solution: Clearly we want to maximize $f(x)$ when $\sin (x) \geq 0$ and minimize $f(x)$ when $\sin (x)<0$. We do this by setting $f(x)=5$ in the first case and $f(x)=-5$ in the second case. Noting that the bounds of integration cover precisely one full period of sin, we see that the integral becomes equivalent to twice the integral of $5 \sin (x)$ over the half period where $\sin (x) \geq 0$. This results in 20 .
3. Answer: $\frac{5}{2} \ln \frac{8}{3}$

Solution: Note that we can write the integral as

$$
\int_{2^{5}}^{3^{5}} \frac{1}{x^{3 / 5}\left(x^{2 / 5}-1\right)} d x
$$

We solve via u-substitution. Let $u=x^{2 / 5}-1$:

$$
d u=\frac{2}{5} x^{-3 / 5} d x \Longrightarrow d x=\frac{5}{2} x^{3 / 5} d u
$$

The integral becomes

$$
\frac{5}{2} \int_{2^{2}-1}^{3^{2}-1} \frac{x^{3 / 5}}{x^{3 / 5} \cdot u} d u=\frac{5}{2} \int_{3}^{8} \frac{1}{u} d u
$$

which evaluates to

$$
\frac{5}{2}(\ln 8-\ln 3)=\frac{5}{2} \ln \frac{8}{3}
$$

4. Answer: $\frac{2+\sqrt{3}}{2}$

Solution: We want to minimize the distance between the points $\left(a^{2}, a\right)$ and $(2,1)$. We can equivalently minimize the square of the distance between those two points, which is

$$
\left(2-a^{2}\right)^{2}+(1-a)^{2}=a^{4}-3 a^{2}-2 a+5
$$

The derivative of this function is $4 a^{3}-6 a-2$, which can be factored as $2(a+1)\left(2 a^{2}-2 a-1\right)$. The roots of this cubic are therefore $a=-1, \frac{1 \pm \sqrt{3}}{2}$. Two of the roots are negative and therefore invalid, so therefore $a=\frac{1+\sqrt{3}}{2}$ and

$$
a^{2}=x=\frac{2+\sqrt{3}}{2}
$$

5. Answer: 1

Solution: We begin by observing that due to the inverse function rule, the first three derivatives of g are determined by the first three derivatives of f. Additionally, $f(0)=g(0)=0$. Let $\hat{f}(x)$ and $\hat{g}(x)=\hat{f}^{-1}(x)$ be new functions whose first three derivatives at zero equal those of f and g respectively.
By Taylor Series expansion, we see that $\hat{f}(x)=-\ln (1-x)$ is a suitable choice. Then $\hat{g}(x)=1-e^{-x}$ and $\hat{g}^{(3)}(0)=g^{(3)}(0)=e^{0}=1$.
6. Answer: $e^{-1 / 3}$

Solution: We can approximate $\sin x$ and $\cos x$ by their Taylor series.

$$
\sin x \approx x-\frac{x^{3}}{6}, \quad \cos x \approx 1-\frac{x^{2}}{2}
$$

Substituting the limit becomes

$$
\lim _{x \rightarrow 0}\left(1-\frac{x^{2}}{6}\right)^{2 / x^{2}}=\lim _{x \rightarrow \infty}\left(1+\frac{1}{6 x^{2}}\right)^{-2 x^{2}}=\lim _{x \rightarrow \infty}\left(1+\frac{1}{x^{2}}\right)^{-x^{2} / 3}=\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{-x / 3}=e^{-1 / 3}
$$

because $e=\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}$.
7. Answer: $12 x^{2}-24 x+26-26 e^{-x}$

Solution: First differentiate the equation with respect to x :

$$
g(x)+\int_{0}^{x} g(t) d t=4 x^{3}+2 x
$$

Differentiate again to obtain

$$
g^{\prime}(x)+g(x)=12 x^{2}+2
$$

A particular solution $12 x^{2}-24 x+26$ can be found using the method of undetermined coefficient, so the general solution will be

$$
g(x)=12 x^{2}-24 x+26+C e^{-x}
$$

for some constant C. By substituting $x=0$ into the first equation, we see that $g(0)=0$. We therefore find that $C=-26$, making the answer $12 x^{2}-24 x+26-26 e^{-x}$.
8. Answer: $\frac{\pi \ln 2}{4}$

Solution: Substitute $x=2 \tan \theta$ to get

$$
\int_{0}^{\infty} \frac{\ln x}{x^{2}+4} d x=\frac{1}{2} \int_{0}^{\pi / 2} \ln (2 \tan \theta) d \theta=\frac{1}{2} \cdot \frac{\pi}{2} \ln 2+\frac{1}{2} \int_{0}^{\pi / 2} \ln (\tan \theta) d \theta
$$

We will now show that this final integral is zero by substituting $\theta=\pi / 2-\phi$ to yield

$$
\begin{aligned}
\int_{0}^{\pi / 2} \ln (\tan \theta) d \theta & =-\int_{\pi / 2}^{0} \ln \left(\tan \left(\frac{\pi}{2}-\phi\right)\right) d \phi \\
& =\int_{0}^{\pi / 2} \ln \left(\frac{1}{\tan \phi}\right) d \phi=-\int_{0}^{\pi / 2} \ln (\tan \phi) d \phi
\end{aligned}
$$

which gives us what we wanted, so the answer is $\frac{\pi \ln 2}{4}$.
9. Answer: $\left(1 / 2, e^{-3 / 4}\right)$

Solution: Take the logarithm and approximate using Stirling's approximation ${ }^{1}$
Stirling's approximation says that $\ln (n!) \approx n \ln n-n$ in the limit of large n. Using this, we have

$$
\begin{aligned}
\ln \left(\frac{\sqrt[n^{2}]{1!2!\cdots n!}}{n^{\alpha}}\right) & =\frac{1}{n^{2}} \ln (1!2!\cdots n!)-\alpha \ln n=\frac{1}{n^{2}} \sum_{k=1}^{n} \ln (k!)-\alpha \ln n \\
& \approx \frac{1}{n^{2}} \sum_{k=1}^{n}(k \ln k-k)-\alpha \ln n=\frac{1}{n^{2}} \sum_{k=1}^{n}(k \ln k)-\frac{1}{n^{2}} \frac{n(n+1)}{2}-\alpha \ln n
\end{aligned}
$$

Approximate $n(n+1)$ with n^{2} and approximate the infinite sum by an integral

$$
\approx \frac{1}{n^{2}} \int_{1}^{n} x \ln x d x-\frac{1}{2}-\alpha \ln n
$$

[^0]Integrating by parts

$$
\approx \frac{1}{n^{2}}\left(\frac{n^{2}}{2} \ln n-\frac{n^{2}}{4}+\frac{1}{4}\right)-\frac{1}{2}-\alpha \ln n \approx \frac{1}{2} \ln n-\frac{3}{4}-\alpha \ln n
$$

Therefore,

$$
\lim _{n \rightarrow \infty} \ln \left(\frac{\sqrt[n^{2}]{1!2!\cdots n!}}{n^{\alpha}}\right)=\lim _{n \rightarrow \infty}\left[\left(\frac{1}{2}-\alpha\right) \ln n-\frac{3}{4}\right]
$$

which is finite only when $\frac{1}{2}-\alpha=0$, in which case $\alpha=\frac{1}{2}$ and the limit evaluates to $\frac{3}{4}$. Therefore, we wish to compute

$$
\lim _{n \rightarrow \infty} \frac{\sqrt[n^{2}]{1!2!\cdots n!}}{n^{1 / 2}}=\exp \left[\lim _{n \rightarrow \infty} \ln \left(\frac{\sqrt[n^{2}]{1!2!\cdots n!}}{n^{\alpha}}\right)\right]=e^{3 / 4}
$$

10. Answer: 1/4

Solution: Consider the following expression

$$
\int_{0}^{1}(f(x)-1)\left(f(x)+\frac{1}{2}\right)^{2} d x
$$

Since $f(x) \leq 1$ this expression is less than or equal to 0 . Meanwhile expanding the integrand gives

$$
(f(x)-1)\left(f(x)+\frac{1}{2}\right)^{2}=f(x)^{3}-\frac{3}{4} f(x)-\frac{1}{4}
$$

so its integral is

$$
\begin{aligned}
\int_{0}^{1}(f(x)-1)\left(f(x)-\frac{1}{2}\right)^{2} d x & =\int_{0}^{1} f(x)^{3} d x-\frac{3}{4} \int_{0}^{1} f(x) d x-\frac{1}{4} \int_{0}^{1} d x \\
& =\int_{0}^{1} f(x)^{3} d x-\frac{1}{4}
\end{aligned}
$$

proving that the answer is at most $1 / 4$. Equality occurs when

$$
f(x)= \begin{cases}-1 / 2 & \text { if } 0 \leq x \leq 2 / 3 \\ 1 & \text { if } 2 / 3<x \leq 1\end{cases}
$$

so $1 / 4$ is indeed the maximum.

[^0]: 1http://en.wikipedia.org/wiki/Stirling's_approximation

