1. Answer: 10

Solution: We know that this expression has to be a concave-up parabola (i.e. a parabola that faces upwards), and there is symmetry across the line $x=3$. Hence, we conclude that the vertex of the parabola occurs at $x=3$. Plugging in, we get $4+1+0+1+4=10$.
2. Answer: 22

Solution: Let a and b be the number of problems Alice and Bob solve, respectively. Then $a b=3(a+b)$. Adding 9 to both sides and rearranging, $(a-3)(b-3)=9$. The possible solutions are $(a, b)=(0,0)$, $(4,12),(6,6)$, and $(12,4)$ which sum to 22 .
3. Answer: $\frac{91}{136}$

Solution: We note

$$
\prod_{n=2}^{k} \frac{n^{3}-1}{n^{3}+1}=\prod_{n=2}^{k} \frac{(n-1)\left(n^{2}+n+1\right)}{(n+1)\left(n^{2}-n+1\right)}=\left(\prod_{n=2}^{k} \frac{n-1}{n+1}\right)\left(\prod_{n=2}^{k} \frac{n^{2}+n+1}{n^{2}-n+1}\right)
$$

Each product telescopes, yielding $\frac{1 \cdot 2}{k \cdot(k+1)} \cdot \frac{k^{2}+k+1}{3}$. Evaluating at $k=16$ yields $\frac{91}{136}$.

4. Answer: 2047

Solution: The possible values of b are precisely the powers of two not exceeding 2012 (including $2^{0}=1$). The following proof uses the fact that the zeroes of sine and cosine are precisely numbers of the form $t \pi$ and $(t+1 / 2) \pi$, respectively, for t an integer.
Suppose b is not a power of 2 . Then it can be written as $2^{m}(1+2 k)$ for $m \geq 0, k>0$. Since $2^{m}<b$, by assumption f must have a root at 2^{m}. But then f must have a root at b, too:

- If $\sin \left(2^{m} a\right)=0$, then $2^{m} a=t \pi$ for some integer t, so $\sin (b a)=\sin \left((1+2 k) 2^{m} a\right)=\sin ((1+2 k) t \pi)=0$ and b is a root of f.
- If $\cos \left(2^{m} a\right)=0$, then $2^{m} a=(t+1 / 2) \pi$ for some integer t so

$$
\cos (b a)=\cos \left((1+2 k) 2^{m} a\right)=\cos ((1+2 k)(t+1 / 2) \pi)=\cos ((t+k+2 k t+1 / 2) \pi)=0
$$

and thus b is a root of f.
This is a contradiction, so b can only be a power of 2 .
For each b of the form 2^{m}, we can construct an f that works by using cosine terms to cover integers preceding b and sine terms thereafter:

$$
f(x)=\left(\prod_{i=1}^{m} \cos \left(\pi x / 2^{i}\right)\right)\left(\prod_{j=b+1}^{2012} \sin (\pi x / j)\right)
$$

has a root at every positive integer at most 2012 except b.
Hence, our final answer is $1+2+4+\ldots+1024=2048-1=2047$.
5. Answer: - $\mathbf{1 2 5}$

Solution: If the three roots of f are r_{1}, r_{2}, r_{3}, we have $f(x)=x^{3}-\left(r_{1}+r_{2}+r_{3}\right) x^{2}+\left(r_{1} r_{2}+r_{1} r_{3}+r_{2} r_{3}\right) x-$ $r_{1} r_{2} r_{3}$, so $f(-1)=-1-\left(r_{1}+r_{2}+r_{3}\right)-\left(r_{1} r_{2}+r_{1} r_{3}+r_{2} r_{3}\right)-r_{1} r_{2} r_{3}$. Since $r_{1} r_{2} r_{3}=64$, the arithmetic mean-geometric mean inequality reveals that $r_{1}+r_{2}+r_{3} \geq 3\left(r_{1} r_{2} r_{3}\right)^{1 / 3}=12$ and $r_{1} r_{2}+r_{1} r_{3}+r_{2} r_{3} \geq$ $3\left(r_{1} r_{2} r_{3}\right)^{2 / 3}=48$. It follows that $f(-1)$ is at most $-1-12-48-64=-125$. We have equality when all roots are equal, i.e. $f(x)=(x-4)^{3}$.
6. Answer: - 24

Solution: Consider the polynomial $Q(x)=P(x)-3$. Q has roots at $x=2$ and $x=3$. Moreover, since these roots are maxima, they both have multiplicity 2 . Hence, Q is of the form $a(x-2)^{2}(x-3)^{2}$, and so $P(x)=a(x-2)^{2}(x-3)^{2}+3 . P(1)=0 \Longrightarrow a=-\frac{3}{4}$, allowing us to compute $P(5)=-\frac{3}{4}(9)(4)+3=-24$.

7. Answer: - $\mathbf{1 4}$

Solution: By Viéta's Formulas, we have that $f(0)=-a_{1} b_{1} c_{1}$ and $g(0)=-a_{2} b_{2} c_{2}$. Additionally, $\left(a-\frac{1}{b}\right)\left(b-\frac{1}{c}\right)\left(c-\frac{1}{a}\right)=-3$ and $\left(a-\frac{1}{b}\right)+\left(b-\frac{1}{c}\right)+\left(c-\frac{1}{a}\right)=5$. Expanding the first expression yields $-3=a b c-\frac{1}{a b c}-\left((a+b+c)-\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right)=a b c-\frac{1}{a b c}-5$. This is equivalent to $(a b c)^{2}-2(a b c)-1=0$, so $a b c=1 \pm \sqrt{2}$. It follows that $f(0)^{3}+g(0)^{3}=-(1+\sqrt{2})^{3}-(1-\sqrt{2})^{3}=-14$.
8. Answer: $(\mathbf{1}, \mathbf{1}, \mathbf{1})(\mathbf{1 , 3 , 3})(\mathbf{3 , 1 , 3})(3,3,1)$

Solution: Rearranging the given equality yields $x y z-2(x y+x z+y z)+4(x+y+z)-8=-1$. But the left side factors as $(x-2)(y-2)(z-2)$. Since all quantities involved are integral, we must have each factor equal to ± 1. It is easy to verify that the only possibilities for (x, y, z) are those listed.
9. Answer: $\sqrt{5}$

Solution: We shall use the formula $S_{\triangle P_{1} O P_{2}}=\frac{1}{2}\left|z_{1}\right|\left|z_{2}\right| \sin \theta$, where θ is the angle between z_{1} and z_{2}. Solving for z_{2} using the quadratic equation, we obtain $z_{2}=\frac{1 \pm \sqrt{5} i}{2} z_{1}$. From this relationship we see that $\tan \theta=\sqrt{5}$, so $\sin \theta=\frac{\sqrt{5}}{\sqrt{6}} ;$ also, $\left|z_{2}\right|=\frac{\sqrt{6}}{2}\left|z_{1}\right|$. Thus

$$
S_{\triangle P_{1} O P_{2}}=\frac{1}{2}\left|z_{1}\right|\left(\frac{\sqrt{6}}{2}\left|z_{1}\right|\right)\left(\frac{\sqrt{5}}{\sqrt{6}}\right)=\frac{\sqrt{5}}{4}\left|z_{1}\right|^{2} .
$$

Now, we note that $\left|z_{1}\right|$ must be 2 . There are many ways to see this. Geometrically, $z_{1}-2$ and $z_{1}+2$ form a right triangle with the origin because they are $\frac{\pi}{2}$ apart. z_{1} is then the median from the origin to the hypotenuse, so its magnitude is equal to half the length of the hypotenuse, which is $\left(z_{1}+2\right)-\left(z_{1}-2\right)=4$. Or we can set $\frac{z_{1}-2}{z_{1}+2}=b i$. Solving, we obtain $z_{1}=\frac{-2(b-i)}{b+i}$ which satisfies $\left|z_{1}\right|=2$.

Therefore, $S_{\triangle P_{1} O P_{2}}=\frac{\sqrt{5}}{4} \cdot 2^{2}=\sqrt{\sqrt{5}}$.
10. Answer: $\frac{2013}{4025}$

Solution: To simplify notation, define $Y_{n}=\left\lceil\log _{2 n} X_{n}\right\rceil$.
We begin by computing the probability that Y_{n} is odd. $Y_{n}=-1$ if $-2<\log _{2 n} X_{n} \leq-1$, or $\frac{1}{(2 n)^{2}}<X_{n} \leq$ $\frac{1}{2 n}$. Similarly, $Y_{n}=-3$ if $\frac{1}{(2 n)^{4}}<X_{n} \leq \frac{1}{(2 n)^{3}}$, and so on. Adding up the lengths of these intervals, we see that the probability that Y_{n} is odd is

$$
\sum_{k=1}^{\infty} \frac{1}{(2 n)^{2 k-1}}-\frac{1}{(2 n)^{2 k}}=\frac{\frac{1}{2 n}\left(1-\frac{1}{2 n}\right)}{1-\frac{1}{(2 n)^{2}}}=\frac{\frac{1}{2 n}}{\left(1+\frac{1}{2 n}\right)}=\frac{1}{2 n+1}
$$

Armed with this fact, we are now ready to solve the problem. One way to continue would be to note that the probability that Y_{1} is even is $2 / 3$, the probability that $Y_{1}+Y_{2}$ is even is $3 / 5$, the probability that $Y_{1}+Y_{2}+Y_{3}$ is even is $4 / 7$ and to show by induction that the probability that $Y_{1}+\cdots Y_{n}$ is even is $\frac{n+1}{2 n+1}$. Below, we present an alternate approach.
Note that $Y_{1}+Y_{2}+\cdots+Y_{2012}$ is even if and only if $(-1)^{Y_{1}+Y_{2}+\cdots+Y_{2012}}=1$. Rewrite $(-1)^{Y_{1}+Y_{2}+\cdots+Y_{2012}}$ as $(-1)^{Y_{1}}(-1)^{Y_{2}} \cdots(-1)^{Y_{2012}}$, and note that because the Y_{n} are independent,

$$
\begin{equation*}
E\left[(-1)^{Y_{1}}(-1)^{Y_{2}} \cdots(-1)^{Y_{2012}}\right]=E\left[(-1)^{Y_{1}}\right] E\left[(-1)^{Y_{2}}\right] \cdots E\left[(-1)^{Y_{2012}}\right] \tag{1}
\end{equation*}
$$

where E denotes the expected value of the quantity. But $E\left[Y_{n}\right]=(+1) \cdot P\left(Y_{n}\right.$ is even $)+(-1) \cdot P\left(Y_{n}\right.$ is odd $)$. We computed earlier that the probability that Y_{n} is odd is $\frac{1}{2 n+1}$, so $E\left[Y_{n}\right]=\frac{2 n-1}{2 n+1}$ and product in (1) is $\frac{1}{3} \cdot \frac{3}{5} \cdots \frac{4023}{4025}$, which telescopes to yield $\frac{1}{4025}$. Let p be the probability that $Y_{1}+Y_{2}+\cdots Y_{2012}$ is even. We just found that $(+1)(p)+(-1)(1-p)=\frac{1}{4025}$, which we can solve to obtain $p=\frac{2013}{4025}$.

