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1. Answer: 312− 180
√
3

First let a be the length of AE. Then CE = a/
√

2, BE = 1 − a/
√

2 so AE2 = a2 = 1 + BE2 =
2−
√

2a+ a2/2. Solving it gives a2 + 2
√

2a− 4 = 0, (a+
√

2)2 = 6 so a =
√

6−
√

2.
Next let b be the length of IJ . Then AIJ is equilateral so AJ = b. Also JE = 2/

√
3b, so AE = a =

2+
√
3√

3
b, b = (2−

√
3)(
√

3)(
√

6−
√

2) =
√

2(9− 5
√

3). Squaring it gives 312− 180
√

3.

2. Answer: 1, −1
The whole equation is ≡ 0 (mod 3), so x3 + 6x2 + 2x− 6 should be 3 or −3. The equation (x3 + 6x2 +
2x−6)2 = 32 can be rewritten using difference of squares as (x−1)(x2+7x−9)(x+1)(x2+5x−3) = 0,
so only 1 and −1 work for x.

3. Answer: 12

After dividing the equation by 4x2, we can re-write it as

a

(
x

2
+

1

2x

)2

+

(
x

2
+

1

2x

)
− a = b.

Set y = x
2 + 1

2x , which has range (−∞,−1]∪ [1,∞). Therefore, we need all b in (−2, 2) such that b is in
the range of f(y) = ay2 + y− a for the domain y ∈ (−∞,−1]∪ [1,∞). The vertex of this parabola lies
at y = − 1

2a ∈ (−1/4,−1/12), so the desired range is just all values greater than f(−1) = −1. Hence,
A is the set of all points where −1 < b < 2 and 2 < a < 6, so the area is 12.

4. Answer: 0

A polynomial p(x) has a multiple root at x = a if and only if x− a divides both p and p′. Continuing
inductively, the nth derivative p(n) has a multiple root b if and only if x − b divides p(n) and p(n+1).
Since f(x) has 1 as a root with multiplicity 4, x−1 must divide each of f, f ′, f ′′, f ′′′. Hence f ′′′(1) = 0.
Similarly, x−2 divides each of f, f ′, f ′′ so f ′′(2) = 0 and x−3 divides each of f, f ′, meaning f ′(3) = 0.
Hence the desired sum is 0.

5. Answer: P (x) = 1− x2

First suppose P (x) is constant or linear. Then we have P (2010) + P (2012) = 2P (2011), which is a
contradiction because the left side is congruent to 1 (mod 3) and the right is congruent to 0 (mod 3). So
P must be at least quadratic. The space of quadratic polynomials in x is spanned by the polynomials
f(x) = 1, g(x) = x, and h(x) = x2. Applying each of these to 2010, 2011, and 2012, we have the mod
3 equivalences:

f(2010, 2011, 2012) ≡ (1, 1, 1)

g(2010, 2011, 2012) ≡ (0, 1, 2)

h(2010, 2011, 2012) ≡ (0, 1, 1)

Subtracting the third row from the first, we have P (x) = f(x)−h(x) = 1−x2, giving P (2010, 2011, 2012) ≡
(1, 0, 0) (mod 3), as desired. Uniqueness follows from the observation that the three vectors above form
a basis for (Z/3Z)3.

6. Answer: 10

Consider the graphs of y = t3 − 12t2 + 21t and y = p(p ≤ 0). These two graphs intersect at three
points (counting multiplicity) if and only if there are three nonnegative x, y, z satisfying xyz = p. In
order for these two to intersect at three points, p should lie between the local maximum and the local
minimum of the cubic function y = t3 − 12t2 + 21t, so the maximal p will lie at the local maximum of
this cubic. Since y′ = 3t2 − 24t+ 21 = 3(t− 1)(t− 7), the local maximum occurs at t = 1, so the local

maximum is 13 − 12 · 12 + 21 · 1 = 10 (this can be achieved by letting (x, y, z) = (1, 1, 10)).
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7. Answer: 11
256

Call the three numbers x, y, and z. By symmetry, we need only consider the case 2 ≥ x ≥ y ≥ z ≥ 0.
Plotted in 3D, the values of (x, y, z) satisfying these inequalities form a triangular pyramid with a leg-2
right isosceles triangle as its base and a height of 2, with a volume of 2 · 2 · 12 · 2 ·

1
3 = 4

3 . We now
need the volume of the portion of the pyramid satisfying x − z ≤ 1

4 . The equation z = x − 1
4 is a

plane which slices off a skew triangular prism along with a small triangular pyramid at one edge of
the large triangular pyramid. The prism has a leg- 14 right isosceles triangle as its base and a height
of 7

4 , so has volume 1
4 ·

1
4 ·

1
2 ·

7
4 = 7

27 . The small triangular pyramid also has a leg- 14 right isosceles
triangle as its base and a height of 1

4 , so has volume 1
4 ·

1
4 ·

1
2 ·

1
4 ·

1
3 = 1

3·27 . Then our probability is(
7
27 + 1

3·27
)
/
(
4
3

)
= 11/256.

8. Answer: 1
7

Let x be the probability that Frank reaches the cheese before the mousetrap, starting from the top
left. Let y be the probability that Frank reaches the cheese before the mousetrap, starting from the
top right or the bottom left (which are symmetric).

After 2 moves from the top left there is 1
3 chance that Frank returns to the top left corner, there is 1

3
chance that Frank reaches the mousetrap, and there is 1

3 chance that Frank reaches the top right or
bottom left corners. This gives us the relation

x =
1

3
x+

1

3
0 +

1

3
y.

After 2 moves from the top right corner there is 1
3 chance that Frank returns to the top right corner,

1
3 chance that Frank reaches the mousetrap, 1

6 chance that Frank reaches the top left corner, and 1
6

chance that Frank reaches the cheese. This gives the relation

y =
1

3
y +

1

3
0 +

1

6
x+

1

6
.

Now we have a system of linear of equations and we solve, obtaining x = 1
7 .

9. Answer:
√
x +
√
y = 1 or equivalent form

The limiting curve is the boundary of a region given by the union of all line segments connecting (q, 0)
and (0, 1 − q) for all numbers 0 ≤ q ≤ 1. Such a line segment has equation x

q + y
1−q = 1. Thus a

point (x0, y0) is in that region if and only if the equation x
q + y

1−q = 1, (1 − q)x + qy = q(1 − q) has

a solution in 0 ≤ q ≤ 1. Let F (q) = (1 − q)x + qy − q(1 − q) = q2 − (1 + x − y)q + x. Note that
F (0) = x ≥ 0 and F (1) = y ≥ 0, and the minimum of F at 1+x−y

2 is always between 0 and 1. So F has

a root in [0, 1] if and only if F ( 1+x−y
2 ) = − (1+x−y)2

4 + x ≤ 0. So 4x ≤ (1 + x− y)2, 2
√
x ≤ 1 + x− y,

y ≤ 1− 2
√
x+ x = (1−

√
x)2,

√
y ≤ 1−

√
x, and finally we have

√
x+
√
y ≤ 1.

10. Answer: 20112 − 2011 + 2 = 4042112

Let f(n) denote the maximum number of regions into which n circles can partition the plane. We will
show that f(n) is a quadratic polynomial in n. Indeed, let A be a planar arrangement of n circles.
Note that A is a graph: Each intersection point is a vertex, and the arcs connecting them are edges.
Having recognized this, we can apply Euler’s theorem, V − E + F = 2, to find the number of regions
(i.e., F ). It is easy to see that an arrangement with the maximum number of vertices is optimal. The

maximum number of vertices is V = 2

(
n

2

)
= n(n− 1), since each circle can intersect each other circle

in at most two vertices. In this optimal arrangement, each circle contains 2(n − 1) vertices and the
same number of edges; thus, the total number of edges is E = 2n(n − 1). Thus, the desired quantity
is f(n) = E − V + 2 = n2 − n+ 2, so our answer is 20112 − 2011 + 2 = 4042112.

Alternative Solution: As before, we apply Euler’s theorem for planar graphs. Given that circles
are defined by quadratic polynomials, it is clear that V and E are each quadratic in n. In particular,
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Euler’s theorem implies that F is quadratic in n. Moreover, it is easy to check that f(1) = 2, f(2) = 4,
and f(3) = 8. Interpolating gives f(n) = n2 − n+ 1, as in the first solution.

11. Answer: 1
4

If we consider the triangle ABC with side length AB = x+ y, BC = y + z, CA = z + x, the equation
becomes

|ABC|2

AB2 ·BC2
=

sin2B

4
≤ 1

4
.

12. Answer: x2 − 4y − 4 = 0

Let O = (0, 0, 1) be the center of the sphere. For a point X = (x, y, 0) on the boundary of the
projection, the angle ∠XPO is constant as X varies, since it is just the angle between OP and any
tangent from P to the sphere. Considering the case when X = (0,−1, 0), we can see that ∠XPO = 45◦.

Writing this in terms of the dot product, one has (
−−→
PO ·

−−→
PX)2 = 1

2 |
−−→
PO|2|

−−→
PX|2, which is equivalent to

((0, 1,−1) · (x, y+ 1,−2))2 = 1
2 |(0, 1,−1)|2|(x, y+ 1,−2)|2, or (y+ 3)2 = x2 + (y+ 1)2 + 4. The answer

is x2 − 4y − 4 = 0.

13. Answer: 22011

Define zk = xk + iyk. Then the equations are equivalent to zk+1 = zk
2 − 2, z2012 = z1. Let α be a

solution of z1 = α+ α−1 (which always has two distinct solutions unless z1 = 2 or −2). Then one can

check by induction that zk = α2k−1

+ α−2
k−1

. Since one has z2012 = z1, α22011 + α−2
2011

= α+ α−1.

Set N = 22011 and rewrite the above as α2N + 1 = αN−1 +αN+1, or (αN+1− 1)(αN−1− 1) = 0. Since
N is even, N + 1 and N − 1 are relatively prime. So the equations XN+1 = 1 and XN−1 = 1 have
only the root 1 in common. Therefore there are (N + 1) + (N − 1) − 1 = 2N − 1 possibilities for α.
Meanwhile, any one value of z1 = α+ α−1 corresponds to two choices of α except when α = 1 or −1.
So our 2N − 2 choices of α 6= 1 together give N − 1 different solutions for z1, and α = 1 give a single
solution z = 2. The answer is N = 22011.

14. Answer: π ln(2)
8

Let I denote the integral we wish to compute. The function f(x) =
ln(x+ 1)

x2 + 1
does not have an

elementary antiderivative. We will use Taylor series to compute I. We can find the Taylor series for

the function
ln(x+ 1)

x2 + 1
using the following formulas:

ln(x+ 1) = x− x2

2
+
x3

3
− . . .

1

1 + x2
= 1− x2 + x4 − . . .

These formulas aren’t good everywhere, but they do hold in (0, 1). We have

f(x) =

(
x− x2

2
+
x3

3
− x4

4
+ . . .

)(
1− x2 + x4 − x6 + . . .

)
= x+

(
−1

2

)
x2 +

(
1

3
− 1

)
x3 +

(
−1

4
+

1

2

)
x4 +

(
1

5
− 1

3
+ 1

)
x5 + . . .

In particular, an antiderivative is given by

F (x) =
1

2
x2 +

1

3

(
−1

2

)
x3 +

1

4

(
1

3
− 1

)
x4 +

1

5

(
−1

4
+

1

2

)
x5 +

1

6

(
1

5
− 1

3
+ 1

)
x6 + . . .

The definite integral I is given by F (1), i.e., the sum

I =
1

2
+

1

3

(
−1

2

)
+

1

4

(
1

3
− 1

)
+

1

5

(
−1

4
+

1

2

)
+

1

6

(
1

5
− 1

3
+ 1

)
+ . . .
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Now we use the facts that

1− 1

3
+

1

5
− 1

7
+ . . . =

π

4

1− 1

2
+

1

3
− 1

4
+ . . . = ln(2),

from the Taylor series for tan−1(x) and ln(x + 1) respectively. Notice that in the above sum, every

number of the form
1

r · s
, where r is even and s is odd, occurs exactly once, with a positive sign if

r + s ≡ 3 (mod 4) and a negative sign if 1 (mod 4). Therefore, it is clear that

I =

(
1− 1

3
+

1

5
− 1

7
+ . . .

)(
1

2
− 1

4
+

1

6
− 1

8
+ . . .

)
=
π

4
· 1

2

(
1− 1

2
+

1

3
− 1

4
+ . . .

)
=
π ln(2)

8
.

15. Answer: 1
2

Note that both gcd(a, b − 1) and gcd(a − 1, b) divide a + b − 1. Also they are relatively prime, since
gcd(a, b − 1) | a and gcd(a − 1, b) | a − 1. So their product is less than or equal to a + b − 1, and
therefore by the AM-GM inequality we have

1

gcd(a, b− 1)
+

1

gcd(a− 1, b)
≥ 2

√
1

gcd(a, b− 1) · gcd(a− 1, b)
≥ 2√

a+ b− 1
.

Thus α = 1
2 and m = 2 suffice. To show that there is no such m for smaller α, let b = (a− 1)2. Then

gcd(a, b− 1) = a and gcd(a− 1, b) = a− 1, so(
1

gcd(a, b− 1)
+

1

gcd(a− 1, b)

)
(a+ b)α =

(2a− 1)(a2 − a+ 1)α

a(a− 1)

and the limit when a goes to ∞ is zero if α < 1
2 .


