1. Answer: $312 - 180\sqrt{3}$

First let *a* be the length of *AE*. Then $CE = a/\sqrt{2}$, $BE = 1 - a/\sqrt{2}$ so $AE^2 = a^2 = 1 + BE^2 = 2 - \sqrt{2}a + a^2/2$. Solving it gives $a^2 + 2\sqrt{2}a - 4 = 0$, $(a + \sqrt{2})^2 = 6$ so $a = \sqrt{6} - \sqrt{2}$. Next let *b* be the length of *IJ*. Then *AIJ* is equilateral so AJ = b. Also $JE = 2/\sqrt{3}b$, so $AE = a = \frac{2+\sqrt{3}}{\sqrt{3}}b$, $b = (2 - \sqrt{3})(\sqrt{3})(\sqrt{6} - \sqrt{2}) = \sqrt{2}(9 - 5\sqrt{3})$. Squaring it gives $312 - 180\sqrt{3}$.

2. Answer: 1, -1

The whole equation is $\equiv 0 \pmod{3}$, so $x^3 + 6x^2 + 2x - 6$ should be 3 or -3. The equation $(x^3 + 6x^2 + 2x - 6)^2 = 3^2$ can be rewritten using difference of squares as $(x-1)(x^2+7x-9)(x+1)(x^2+5x-3) = 0$, so only 1 and -1 work for x.

3. Answer: 12

After dividing the equation by $4x^2$, we can re-write it as

$$a\left(\frac{x}{2} + \frac{1}{2x}\right)^2 + \left(\frac{x}{2} + \frac{1}{2x}\right) - a = b.$$

Set $y = \frac{x}{2} + \frac{1}{2x}$, which has range $(-\infty, -1] \cup [1, \infty)$. Therefore, we need all b in (-2, 2) such that b is in the range of $f(y) = ay^2 + y - a$ for the domain $y \in (-\infty, -1] \cup [1, \infty)$. The vertex of this parabola lies at $y = -\frac{1}{2a} \in (-1/4, -1/12)$, so the desired range is just all values greater than f(-1) = -1. Hence, A is the set of all points where -1 < b < 2 and 2 < a < 6, so the area is 12.

4. Answer: 0

A polynomial p(x) has a multiple root at x = a if and only if x - a divides both p and p'. Continuing inductively, the *n*th derivative $p^{(n)}$ has a multiple root b if and only if x - b divides $p^{(n)}$ and $p^{(n+1)}$. Since f(x) has 1 as a root with multiplicity 4, x - 1 must divide each of f, f', f''. Hence f'''(1) = 0. Similarly, x - 2 divides each of f, f', f'' so f''(2) = 0 and x - 3 divides each of f, f', meaning f'(3) = 0. Hence the desired sum is 0.

5. Answer: $P(x) = 1 - x^2$

First suppose P(x) is constant or linear. Then we have P(2010) + P(2012) = 2P(2011), which is a contradiction because the left side is congruent to 1 (mod 3) and the right is congruent to 0 (mod 3). So P must be at least quadratic. The space of quadratic polynomials in x is spanned by the polynomials f(x) = 1, g(x) = x, and $h(x) = x^2$. Applying each of these to 2010, 2011, and 2012, we have the mod 3 equivalences:

$$f(2010, 2011, 2012) \equiv (1, 1, 1)$$
$$g(2010, 2011, 2012) \equiv (0, 1, 2)$$
$$h(2010, 2011, 2012) \equiv (0, 1, 1)$$

Subtracting the third row from the first, we have $P(x) = f(x) - h(x) = 1 - x^2$, giving $P(2010, 2011, 2012) \equiv (1, 0, 0) \pmod{3}$, as desired. Uniqueness follows from the observation that the three vectors above form a basis for $(\mathbb{Z}/3\mathbb{Z})^3$.

6. Answer: 10

Consider the graphs of $y = t^3 - 12t^2 + 21t$ and $y = p(p \le 0)$. These two graphs intersect at three points (counting multiplicity) if and only if there are three nonnegative x, y, z satisfying xyz = p. In order for these two to intersect at three points, p should lie between the local maximum and the local minimum of the cubic function $y = t^3 - 12t^2 + 21t$, so the maximal p will lie at the local maximum of this cubic. Since $y' = 3t^2 - 24t + 21 = 3(t-1)(t-7)$, the local maximum occurs at t = 1, so the local maximum is $1^3 - 12 \cdot 1^2 + 21 \cdot 1 = 10$ (this can be achieved by letting (x, y, z) = (1, 1, 10)).

7. Answer: $\frac{11}{256}$

Call the three numbers x, y, and z. By symmetry, we need only consider the case $2 \ge x \ge y \ge z \ge 0$. Plotted in 3D, the values of (x, y, z) satisfying these inequalities form a triangular pyramid with a leg-2 right isosceles triangle as its base and a height of 2, with a volume of $2 \cdot 2 \cdot \frac{1}{2} \cdot 2 \cdot \frac{1}{3} = \frac{4}{3}$. We now need the volume of the portion of the pyramid satisfying $x - z \le \frac{1}{4}$. The equation $z = x - \frac{1}{4}$ is a plane which slices off a skew triangular prism along with a small triangular pyramid at one edge of the large triangular pyramid. The prism has a leg- $\frac{1}{4}$ right isosceles triangle as its base and a height of $\frac{7}{4}$, so has volume $\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{2} \cdot \frac{7}{4} = \frac{7}{27}$. The small triangular pyramid also has a leg- $\frac{1}{4}$ right isosceles triangle as its base and a height of $\frac{1}{4}$, so has volume $\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{3} = \frac{1}{3 \cdot 2^7}$. Then our probability is $(\frac{7}{27} + \frac{1}{3 \cdot 2^7}) / (\frac{4}{3}) = 11/256$.

8. Answer: $\frac{1}{7}$

Let x be the probability that Frank reaches the cheese before the mousetrap, starting from the top left. Let y be the probability that Frank reaches the cheese before the mousetrap, starting from the top right or the bottom left (which are symmetric).

After 2 moves from the top left there is $\frac{1}{3}$ chance that Frank returns to the top left corner, there is $\frac{1}{3}$ chance that Frank reaches the mousetrap, and there is $\frac{1}{3}$ chance that Frank reaches the top right or bottom left corners. This gives us the relation

$$x = \frac{1}{3}x + \frac{1}{3}0 + \frac{1}{3}y.$$

After 2 moves from the top right corner there is $\frac{1}{3}$ chance that Frank returns to the top right corner, $\frac{1}{3}$ chance that Frank reaches the mousetrap, $\frac{1}{6}$ chance that Frank reaches the top left corner, and $\frac{1}{6}$ chance that Frank reaches the cheese. This gives the relation

$$y = \frac{1}{3}y + \frac{1}{3}0 + \frac{1}{6}x + \frac{1}{6}$$

Now we have a system of linear of equations and we solve, obtaining $x = \frac{1}{7}$.

9. Answer: $\sqrt{x} + \sqrt{y} = 1$ or equivalent form

The limiting curve is the boundary of a region given by the union of all line segments connecting (q, 0) and (0, 1-q) for all numbers $0 \le q \le 1$. Such a line segment has equation $\frac{x}{q} + \frac{y}{1-q} = 1$. Thus a point (x_0, y_0) is in that region if and only if the equation $\frac{x}{q} + \frac{y}{1-q} = 1$, (1-q)x + qy = q(1-q) has a solution in $0 \le q \le 1$. Let $F(q) = (1-q)x + qy - q(1-q) = q^2 - (1+x-y)q + x$. Note that $F(0) = x \ge 0$ and $F(1) = y \ge 0$, and the minimum of F at $\frac{1+x-y}{2}$ is always between 0 and 1. So F has a root in [0,1] if and only if $F(\frac{1+x-y}{2}) = -\frac{(1+x-y)^2}{4} + x \le 0$. So $4x \le (1+x-y)^2$, $2\sqrt{x} \le 1+x-y$, $y \le 1 - 2\sqrt{x} + x = (1-\sqrt{x})^2$, $\sqrt{y} \le 1 - \sqrt{x}$, and finally we have $\sqrt{x} + \sqrt{y} \le 1$.

10. Answer: $2011^2 - 2011 + 2 = 4042112$

Let f(n) denote the maximum number of regions into which n circles can partition the plane. We will show that f(n) is a quadratic polynomial in n. Indeed, let A be a planar arrangement of n circles. Note that A is a graph: Each intersection point is a vertex, and the arcs connecting them are edges. Having recognized this, we can apply Euler's theorem, V - E + F = 2, to find the number of regions (i.e., F). It is easy to see that an arrangement with the maximum number of vertices is optimal. The maximum number of vertices is $V = 2\binom{n}{2} = n(n-1)$, since each circle can intersect each other circle in at most two vertices. In this optimal arrangement, each circle contains 2(n-1) vertices and the same number of edges; thus, the total number of edges is E = 2n(n-1). Thus, the desired quantity is $f(n) = E - V + 2 = n^2 - n + 2$, so our answer is $2011^2 - 2011 + 2 = 4042112$.

Alternative Solution: As before, we apply Euler's theorem for planar graphs. Given that circles are defined by quadratic polynomials, it is clear that V and E are each quadratic in n. In particular,

Euler's theorem implies that F is quadratic in n. Moreover, it is easy to check that f(1) = 2, f(2) = 4, and f(3) = 8. Interpolating gives $f(n) = n^2 - n + 1$, as in the first solution.

11. Answer: $\frac{1}{4}$

If we consider the triangle ABC with side length AB = x + y, BC = y + z, CA = z + x, the equation becomes

$$\frac{|ABC|^2}{AB^2 \cdot BC^2} = \frac{\sin^2 B}{4} \le \left\lfloor \frac{1}{4} \right\rfloor.$$

12. Answer: $x^2 - 4y - 4 = 0$

Let O = (0, 0, 1) be the center of the sphere. For a point X = (x, y, 0) on the boundary of the projection, the angle $\angle XPO$ is constant as X varies, since it is just the angle between OP and any tangent from P to the sphere. Considering the case when X = (0, -1, 0), we can see that $\angle XPO = 45^{\circ}$. Writing this in terms of the dot product, one has $(\overrightarrow{PO} \cdot \overrightarrow{PX})^2 = \frac{1}{2}|\overrightarrow{PO}|^2|\overrightarrow{PX}|^2$, which is equivalent to $((0, 1, -1) \cdot (x, y + 1, -2))^2 = \frac{1}{2}|(0, 1, -1)|^2|(x, y + 1, -2)|^2$, or $(y + 3)^2 = x^2 + (y + 1)^2 + 4$. The answer is $x^2 - 4y - 4 = 0$.

13. Answer: 2²⁰¹¹

Define $z_k = x_k + iy_k$. Then the equations are equivalent to $z_{k+1} = z_k^2 - 2$, $z_{2012} = z_1$. Let α be a solution of $z_1 = \alpha + \alpha^{-1}$ (which always has two distinct solutions unless $z_1 = 2$ or -2). Then one can check by induction that $z_k = \alpha^{2^{k-1}} + \alpha^{-2^{k-1}}$. Since one has $z_{2012} = z_1$, $\alpha^{2^{2011}} + \alpha^{-2^{2011}} = \alpha + \alpha^{-1}$. Set $N = 2^{2011}$ and rewrite the above as $\alpha^{2N} + 1 = \alpha^{N-1} + \alpha^{N+1}$, or $(\alpha^{N+1} - 1)(\alpha^{N-1} - 1) = 0$. Since N is even, N + 1 and N - 1 are relatively prime. So the equations $X^{N+1} = 1$ and $X^{N-1} = 1$ have only the root 1 in common. Therefore there are (N + 1) + (N - 1) - 1 = 2N - 1 possibilities for α . Meanwhile, any one value of $z_1 = \alpha + \alpha^{-1}$ corresponds to two choices of α except when $\alpha = 1$ or -1. So our 2N - 2 choices of $\alpha \neq 1$ together give N - 1 different solutions for z_1 , and $\alpha = 1$ give a single solution z = 2. The answer is $N = 2^{2011}$.

14. Answer: $\frac{\pi \ln(2)}{8}$

Let *I* denote the integral we wish to compute. The function $f(x) = \frac{\ln(x+1)}{x^2+1}$ does not have an elementary antiderivative. We will use Taylor series to compute *I*. We can find the Taylor series for the function $\frac{\ln(x+1)}{x^2+1}$ using the following formulas:

$$\ln(x+1) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots$$
$$\frac{1}{1+x^2} = 1 - x^2 + x^4 - \dots$$

These formulas aren't good everywhere, but they do hold in (0, 1). We have

$$f(x) = \left(x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots\right) \left(1 - x^2 + x^4 - x^6 + \dots\right)$$
$$= x + \left(-\frac{1}{2}\right) x^2 + \left(\frac{1}{3} - 1\right) x^3 + \left(-\frac{1}{4} + \frac{1}{2}\right) x^4 + \left(\frac{1}{5} - \frac{1}{3} + 1\right) x^5 + \dots$$

In particular, an antiderivative is given by

$$F(x) = \frac{1}{2}x^2 + \frac{1}{3}\left(-\frac{1}{2}\right)x^3 + \frac{1}{4}\left(\frac{1}{3} - 1\right)x^4 + \frac{1}{5}\left(-\frac{1}{4} + \frac{1}{2}\right)x^5 + \frac{1}{6}\left(\frac{1}{5} - \frac{1}{3} + 1\right)x^6 + \dots$$

The definite integral I is given by F(1), i.e., the sum

$$I = \frac{1}{2} + \frac{1}{3}\left(-\frac{1}{2}\right) + \frac{1}{4}\left(\frac{1}{3} - 1\right) + \frac{1}{5}\left(-\frac{1}{4} + \frac{1}{2}\right) + \frac{1}{6}\left(\frac{1}{5} - \frac{1}{3} + 1\right) + \dots$$

Now we use the facts that

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \ldots = \frac{\pi}{4}$$

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \ldots = \ln(2),$$

from the Taylor series for $\tan^{-1}(x)$ and $\ln(x+1)$ respectively. Notice that in the above sum, every number of the form $\frac{1}{r \cdot s}$, where r is even and s is odd, occurs exactly once, with a positive sign if $r+s \equiv 3 \pmod{4}$ and a negative sign if 1 (mod 4). Therefore, it is clear that

$$I = \left(1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots\right) \left(\frac{1}{2} - \frac{1}{4} + \frac{1}{6} - \frac{1}{8} + \dots\right)$$
$$= \frac{\pi}{4} \cdot \frac{1}{2} \left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots\right)$$
$$= \frac{\pi \ln(2)}{8}.$$

15. Answer: $\frac{1}{2}$

Note that both gcd(a, b - 1) and gcd(a - 1, b) divide a + b - 1. Also they are relatively prime, since $gcd(a, b - 1) \mid a$ and $gcd(a - 1, b) \mid a - 1$. So their product is less than or equal to a + b - 1, and therefore by the AM-GM inequality we have

$$\frac{1}{\gcd(a,b-1)} + \frac{1}{\gcd(a-1,b)} \ge 2\sqrt{\frac{1}{\gcd(a,b-1) \cdot \gcd(a-1,b)}} \ge \frac{2}{\sqrt{a+b-1}}.$$

Thus $\alpha = \frac{1}{2}$ and m = 2 suffice. To show that there is no such m for smaller α , let $b = (a - 1)^2$. Then gcd(a, b - 1) = a and gcd(a - 1, b) = a - 1, so

$$\left(\frac{1}{\gcd(a,b-1)} + \frac{1}{\gcd(a-1,b)}\right)(a+b)^{\alpha} = \frac{(2a-1)(a^2-a+1)^{\alpha}}{a(a-1)}$$

and the limit when a goes to ∞ is zero if $\alpha < \frac{1}{2}$.