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1. Answer: 312 — 1803
First let a be the length of AE. Then CE = a/v2, BE =1 —a/V2 so AE? = a®> = 1+ BE? =
2 — \/§a+a2/2. Solving it gives a? + 2v/2a — 4 = 0, (a+ \@)2 =6s0a=+6—+v2
Next let b be the length of I.J. Then AIJ is equilateral so AJ = b. Also JE = 2/v/3b, so AE = a =
2%5177 b=(2—-v3)(V3)(vV6 —Vv2) = V2(9 — 5v/3). Squaring it gives 312 — 180+/3.

2. Answer: 1, —1
The whole equation is = 0 (mod 3), so 2% + 622 + 22 — 6 should be 3 or —3. The equation (23 + 622 +
22 —6)2 = 32 can be rewritten using difference of squares as (z —1)(2?+ 72z —9)(x+1) (2?2 +5x—3) = 0,
so only 1 and —1 work for x.

3. Answer: 12

After dividing the equation by 4x2, we can re-write it as

2
a E—Fi + f-ki —a=0b
2 2 2 2 o

Sety =3+ 2%, which has range (—oo, —1]U[1, 00). Therefore, we need all b in (—2,2) such that b is in
the range of f(y) = ay? +y — a for the domain y € (—o0o, —1]U[1,00). The vertex of this parabola lies
at y = —5- € (—1/4,—1/12), so the desired range is just all values greater than f(—1) = —1. Hence,
A is the set of all points where —1 < b < 2 and 2 < a < 6, so the area is 12.

4. Answer: 0

A polynomial p(x) has a multiple root at © = a if and only if  — a divides both p and p’. Continuing
inductively, the nth derivative p(™) has a multiple root b if and only if  — b divides p(™ and p(»+1).
Since f(x) has 1 as a root with multiplicity 4, 2 — 1 must divide each of f, f/, f”, f”’. Hence f"’(1) = 0.
Similarly, z — 2 divides each of f, f/, f" so f”(2) = 0 and = — 3 divides each of f, f’, meaning f’(3) = 0.
Hence the desired sum is 0.

5. Answer: P(z) =1 — 2

First suppose P(z) is constant or linear. Then we have P(2010) + P(2012) = 2P(2011), which is a
contradiction because the left side is congruent to 1 (mod 3) and the right is congruent to 0 (mod 3). So
P must be at least quadratic. The space of quadratic polynomials in x is spanned by the polynomials
f(x) =1, g(z) = x, and h(z) = 2%. Applying each of these to 2010, 2011, and 2012, we have the mod
3 equivalences:
£(2010,2011,2012) = (1,1,1)
(

9(2010,2011,2012) = (0,1,2)
h(2010,2011,2012) = (0,1,1)

Subtracting the third row from the first, we have P(z) = f(z)—h(z) = 1—22, giving P(2010,2011,2012) =
(1,0,0) (mod 3), as desired. Uniqueness follows from the observation that the three vectors above form
a basis for (Z/37)3.

6. Answer: 10

Consider the graphs of y = t3 — 12t + 21t and y = p(p < 0). These two graphs intersect at three
points (counting multiplicity) if and only if there are three nonnegative x,y, z satisfying zyz = p. In
order for these two to intersect at three points, p should lie between the local maximum and the local
minimum of the cubic function y = 3 — 12¢2 + 21¢, so the maximal p will lie at the local maximum of
this cubic. Since y' = 3t? — 24t + 21 = 3(t — 1)(t — 7), the local maximum occurs at ¢ = 1, so the local
maximum is 13 —12-12 +21-1 = (this can be achieved by letting (z,vy, z) = (1,1, 10)).
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7. Answer: =

10.

256
Call the three numbers z,y, and z. By symmetry, we need only consider the case 2 > x >y > 2z > 0.
Plotted in 3D, the values of (z,y, z) satisfying these inequalities form a triangular pyramid with a leg-2

right isosceles triangle as its base and a height of 2, with a volume of 2 -2 - % -2 % = %. We now
need the volume of the portion of the pyramid satisfying x — z < %. The equation z = x — i is a

plane which slices off a skew triangular prism along with a small triangular pyramid at one edge of
the large triangular pyramid. The prism has a leg—f right isosceles triangle as its base and a height

of Z, so has volume i . % . % . % = 217 The small triangular pyramld also has a leg—f right isosceles
triangle as its base and a height of % 7> o has volume i . i . % 1 % = 3_127. Then our probability is

(27 + 527) / (5) = 11/256.

Answer: %

Let = be the probability that Frank reaches the cheese before the mousetrap, starting from the top
left. Let y be the probability that Frank reaches the cheese before the mousetrap, starting from the
top right or the bottom left (which are symmetric)

After 2 moves from the top left there is g chance that Frank returns to the top left corner, there is é
chance that Frank reaches the mousetrap, and there is = chance that Frank reaches the top right or

bottom left corners. This gives us the relation

1‘—333 3 3y.

After 2 moves from the top right corner there i 1s 5 chance that Frank returns to the top right corner,

g chance that Frank reaches the mousetrap, = 5 chance that Frank reaches the top left corner, and 1

chance that Frank reaches the cheese. This gives the relation

SO S
= - - —x 4+ —=.
Y=3Y T3V T TG

Now we have a system of linear of equations and we solve, obtaining x = %

Answer: \/z + ,/y = 1 or equivalent form

The limiting curve is the boundary of a region given by the union of all line segments connecting (g, 0)
and (0,1 — ¢) for all numbers 0 < ¢ < 1. Such a line segment has equatlon 2+ 7 y = 1. Thus a
point (xg,yo) is in that region if and only if the equation 4+ ﬁ =1, (1- q)x + qy = ¢(1 — q) has
a solution in 0 < ¢ < 1. Let F(q) = (1 —q)x +qy — q(1 —q) = ¢*> — (1 + © — y)qg + . Note that
F(0) =2z > 0and F(1) =y > 0, and the minimum of F' at 1+x Y is always between 0 and 1. So F' has
a root in [0,1] if and only if F(12=¥) = (2= W4 <o. So dr<(l+z—y? 2z <l4+z-y,
y<1-2yz+z=(1-x)? /y<1— 2z, and finally we have \/z + /y < 1.

Answer: 20112 — 2011 + 2 = 4042112

Let f(n) denote the maximum number of regions into which n circles can partition the plane. We will
show that f(n) is a quadratic polynomial in n. Indeed, let A be a planar arrangement of n circles.
Note that A is a graph: Each intersection point is a vertex, and the arcs connecting them are edges.
Having recognized this, we can apply Euler’s theorem, V' — E 4+ F = 2, to find the number of regions
(i.e., F'). It is easy to see that an arrangement with the maximum number of vertices is optimal. The

maximum number of vertices is V = 2 ( 2) = n(n — 1), since each circle can intersect each other circle

in at most two vertices. In this optimal arrangement, each circle contains 2(n — 1) vertices and the
same number of edges; thus, the total number of edges is E = 2n(n — 1). Thus, the desired quantity
is f(n) = E—V +2=n?—n+2, so our answer is 20112 — 2011 + 2 = 4042112.

Alternative Solution: As before, we apply Euler’s theorem for planar graphs. Given that circles
are defined by quadratic polynomials, it is clear that V and E are each quadratic in n. In particular,
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11.

12.

13.

14.

Euler’s theorem implies that F' is quadratic in n. Moreover, it is easy to check that f(1) = 2, f(2) = 4,
and f(3) = 8. Interpolating gives f(n) =n? —n + 1, as in the first solution.

Answer: %

If we consider the triangle ABC with side length AB =z +y, BC =y + z, CA = z 4+ x, the equation
becomes

|ABC|? sin® B |1
<

AB2.-BC? 4 |4
Answer: 2 —4y —4=0

Let O = (0,0,1) be the center of the sphere. For a point X = (z,y,0) on the boundary of the
projection, the angle ZX PO is constant as X varies, since it is just the angle between OP and any

tangent from P to the sphere. Considering the case when X = (0, — % we can see that ZX PO = 45°.
Writing this in terms of the dot product, one has % 1174)(z |P ? \P—X2 |2, which is equivalent to
((0,1,-1) - (z,y +1,-2))* = £](0, 1, = 1)|?|(=, y+1 —2)|2, or y+3 = 2%+ (y+1)? + 4. The answer

is $2—4y—4:0.
Answer: 22011

Define 2z, = x, + iyr. Then the equations are equivalent to zp41 = 252 — 2, 22012 = 21. Let a be a
solution of 23 = a + a~! (which always has two distinct solutions unless z; = 2 or —2). Then one can

. . k—1 _ok—1 . 2011 52011
check by induction that z; = a®> + a2 . Since one has 29012 = 21, &2 +a2 L

Set N = 22011 and rewrite the above as a2V +1 = o "1+ oV *1 or (V1 —1)(a¥N "1 —1) = 0. Since
N is even, N + 1 and N — 1 are relatively prime. So the equations XV*+! = 1 and XV~ = 1 have
only the root 1 in common. Therefore there are (N + 1) + (N — 1) — 1 = 2N — 1 possibilities for a.
Meanwhile, any one value of z; = a 4+ a~! corresponds to two choices of o except when o« =1 or —1.
So our 2N — 2 choices of « # 1 together give N — 1 different solutions for z1, and a@ = 1 give a single

=+ o

solution z = 2. The answer is NV = 22011,
Answer: ~In(2)
: 8
. . . In(xz + 1)
Let I denote the integral we wish to compute. The function f(z) = 1 does not have an
T
elementary antiderivative. We will use Taylor series to compute 1. We can find the Taylor series for
1 1
the function M using the following formulas:
22 +1
2 3
x x
1 D=z ——+——...
n(z+1)=x 5 + 3
1
=1—-a?+a2*—

1+22
These formulas aren’t good everywhere, but they do hold in (0,1). We have
3 4

1 9 1 3 1 1 4 1 1 5
= ——= - —1 —— 4+ = - —=+1
w+<2)x +<3 >x +< 4+2)x +<5 3+>x+

In particular, an antiderivative is given by

1 1 1 1 1 1 1 1/1 1
Fx)=-a+-(—=)a¥+>(z-1)a*+=(—-+2)a+- (- +1)ab+...
(x) 5% +3( 2)3: +4(3 )x +5( 4+2)x —1—6 5 3+ x” +

The definite integral I is given by F'(1), i.e., the sum

2 3\ 2] 4\3 50 4 2) 6\5 3
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Now we use the facts that

R S S S
35 7 4
1 1 1

1*54’5*14’.. —lIl(Q),

from the Taylor series for tan~!(x) and In(x + 1) respectively. Notice that in the above sum, every
1
number of the form ——, where r is even and s is odd, occurs exactly once, with a positive sign if

r-s
r+ s =3 (mod 4) and a negative sign if 1 (mod 4). Therefore, it is clear that

r=(1-g+5-7+) (3-3+5-5+)
5 7 2 4 6 8
s
4
s

15. Answer: %

Note that both ged(a,b — 1) and ged(a — 1,b) divide a + b — 1. Also they are relatively prime, since
ged(a,b— 1) | @ and ged(a — 1,b) | a — 1. So their product is less than or equal to a +b — 1, and
therefore by the AM-GM inequality we have

1 1 1 2
>2 > .
ged(a,b—1) + ged(a —1,b) — \/gcd(a,b —1)-ged(a—1,0) — Va+b—1

Thus o = % and m = 2 suffice. To show that there is no such m for smaller «, let b = (a — 1)2. Then
ged(a,b—1) = a and ged(a — 1,b) = a — 1, so

1 1 o (2a—1)(a®* —a+1)~
(gcd(a,b -1) + ged(a — l,b)) (a+0)" = ala—1)

and the limit when a goes to oo is zero if a < %



