1. Answer: $312-180 \sqrt{3}$

First let a be the length of $A E$. Then $C E=a / \sqrt{2}, B E=1-a / \sqrt{2}$ so $A E^{2}=a^{2}=1+B E^{2}=$ $2-\sqrt{2} a+a^{2} / 2$. Solving it gives $a^{2}+2 \sqrt{2} a-4=0,(a+\sqrt{2})^{2}=6$ so $a=\sqrt{6}-\sqrt{2}$.
Next let b be the length of $I J$. Then $A I J$ is equilateral so $A J=b$. Also $J E=2 / \sqrt{3} b$, so $A E=a=$ $\frac{2+\sqrt{3}}{\sqrt{3}} b, b=(2-\sqrt{3})(\sqrt{3})(\sqrt{6}-\sqrt{2})=\sqrt{2}(9-5 \sqrt{3})$. Squaring it gives $312-180 \sqrt{3}$.
2. Answer: 1, - $\mathbf{1}$

The whole equation is $\equiv 0(\bmod 3)$, so $x^{3}+6 x^{2}+2 x-6$ should be 3 or -3 . The equation $\left(x^{3}+6 x^{2}+\right.$ $2 x-6)^{2}=3^{2}$ can be rewritten using difference of squares as $(x-1)\left(x^{2}+7 x-9\right)(x+1)\left(x^{2}+5 x-3\right)=0$, so only 1 and -1 work for x.

3. Answer: 12

After dividing the equation by $4 x^{2}$, we can re-write it as

$$
a\left(\frac{x}{2}+\frac{1}{2 x}\right)^{2}+\left(\frac{x}{2}+\frac{1}{2 x}\right)-a=b
$$

Set $y=\frac{x}{2}+\frac{1}{2 x}$, which has range $(-\infty,-1] \cup[1, \infty)$. Therefore, we need all b in $(-2,2)$ such that b is in the range of $f(y)=a y^{2}+y-a$ for the domain $y \in(-\infty,-1] \cup[1, \infty)$. The vertex of this parabola lies at $y=-\frac{1}{2 a} \in(-1 / 4,-1 / 12)$, so the desired range is just all values greater than $f(-1)=-1$. Hence, A is the set of all points where $-1<b<2$ and $2<a<6$, so the area is 12 .

4. Answer: 0

A polynomial $p(x)$ has a multiple root at $x=a$ if and only if $x-a$ divides both p and p^{\prime}. Continuing inductively, the nth derivative $p^{(n)}$ has a multiple root b if and only if $x-b$ divides $p^{(n)}$ and $p^{(n+1)}$. Since $f(x)$ has 1 as a root with multiplicity $4, x-1$ must divide each of $f, f^{\prime}, f^{\prime \prime}, f^{\prime \prime \prime}$. Hence $f^{\prime \prime \prime}(1)=0$. Similarly, $x-2$ divides each of $f, f^{\prime}, f^{\prime \prime}$ so $f^{\prime \prime}(2)=0$ and $x-3$ divides each of f, f^{\prime}, meaning $f^{\prime}(3)=0$. Hence the desired sum is 0 .
5. Answer: $\boldsymbol{P}(\boldsymbol{x})=1-\boldsymbol{x}^{2}$

First suppose $P(x)$ is constant or linear. Then we have $P(2010)+P(2012)=2 P(2011)$, which is a contradiction because the left side is congruent to $1(\bmod 3)$ and the right is congruent to $0(\bmod 3)$. So P must be at least quadratic. The space of quadratic polynomials in x is spanned by the polynomials $f(x)=1, g(x)=x$, and $h(x)=x^{2}$. Applying each of these to 2010, 2011, and 2012, we have the mod 3 equivalences:

$$
\begin{aligned}
f(2010,2011,2012) & \equiv(1,1,1) \\
g(2010,2011,2012) & \equiv(0,1,2) \\
h(2010,2011,2012) & \equiv(0,1,1)
\end{aligned}
$$

Subtracting the third row from the first, we have $P(x)=f(x)-h(x)=1-x^{2}$, giving $P(2010,2011,2012) \equiv$ $(1,0,0)(\bmod 3)$, as desired. Uniqueness follows from the observation that the three vectors above form a basis for $(\mathbb{Z} / 3 \mathbb{Z})^{3}$.

6. Answer: 10

Consider the graphs of $y=t^{3}-12 t^{2}+21 t$ and $y=p(p \leq 0)$. These two graphs intersect at three points (counting multiplicity) if and only if there are three nonnegative x, y, z satisfying $x y z=p$. In order for these two to intersect at three points, p should lie between the local maximum and the local minimum of the cubic function $y=t^{3}-12 t^{2}+21 t$, so the maximal p will lie at the local maximum of this cubic. Since $y^{\prime}=3 t^{2}-24 t+21=3(t-1)(t-7)$, the local maximum occurs at $t=1$, so the local maximum is $1^{3}-12 \cdot 1^{2}+21 \cdot 1=10$ (this can be achieved by letting $(x, y, z)=(1,1,10)$).

7. Answer: $\frac{11}{256}$

Call the three numbers x, y, and z. By symmetry, we need only consider the case $2 \geq x \geq y \geq z \geq 0$. Plotted in 3D, the values of (x, y, z) satisfying these inequalities form a triangular pyramid with a leg-2 right isosceles triangle as its base and a height of 2 , with a volume of $2 \cdot 2 \cdot \frac{1}{2} \cdot 2 \cdot \frac{1}{3}=\frac{4}{3}$. We now need the volume of the portion of the pyramid satisfying $x-z \leq \frac{1}{4}$. The equation $z=x-\frac{1}{4}$ is a plane which slices off a skew triangular prism along with a small triangular pyramid at one edge of the large triangular pyramid. The prism has a leg- $\frac{1}{4}$ right isosceles triangle as its base and a height of $\frac{7}{4}$, so has volume $\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{2} \cdot \frac{7}{4}=\frac{7}{2^{7}}$. The small triangular pyramid also has a leg- $\frac{1}{4}$ right isosceles triangle as its base and a height of $\frac{1}{4}$, so has volume $\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{3}=\frac{1}{3 \cdot 2^{7}}$. Then our probability is $\left(\frac{7}{2^{7}}+\frac{1}{3 \cdot 2^{7}}\right) /\left(\frac{4}{3}\right)=11 / 256$.

8. Answer: $\frac{1}{7}$

Let x be the probability that Frank reaches the cheese before the mousetrap, starting from the top left. Let y be the probability that Frank reaches the cheese before the mousetrap, starting from the top right or the bottom left (which are symmetric).
After 2 moves from the top left there is $\frac{1}{3}$ chance that Frank returns to the top left corner, there is $\frac{1}{3}$ chance that Frank reaches the mousetrap, and there is $\frac{1}{3}$ chance that Frank reaches the top right or bottom left corners. This gives us the relation

$$
x=\frac{1}{3} x+\frac{1}{3} 0+\frac{1}{3} y .
$$

After 2 moves from the top right corner there is $\frac{1}{3}$ chance that Frank returns to the top right corner, $\frac{1}{3}$ chance that Frank reaches the mousetrap, $\frac{1}{6}$ chance that Frank reaches the top left corner, and $\frac{1}{6}$ chance that Frank reaches the cheese. This gives the relation

$$
y=\frac{1}{3} y+\frac{1}{3} 0+\frac{1}{6} x+\frac{1}{6} .
$$

Now we have a system of linear of equations and we solve, obtaining $x=\frac{1}{7}$.
9. Answer: $\sqrt{x}+\sqrt{y}=1$ or equivalent form

The limiting curve is the boundary of a region given by the union of all line segments connecting $(q, 0)$ and $(0,1-q)$ for all numbers $0 \leq q \leq 1$. Such a line segment has equation $\frac{x}{q}+\frac{y}{1-q}=1$. Thus a point $\left(x_{0}, y_{0}\right)$ is in that region if and only if the equation $\frac{x}{q}+\frac{y}{1-q}=1,(1-q) x+q y=q(1-q)$ has a solution in $0 \leq q \leq 1$. Let $F(q)=(1-q) x+q y-q(1-q)=q^{2}-(1+x-y) q+x$. Note that $F(0)=x \geq 0$ and $F(1)=y \geq 0$, and the minimum of F at $\frac{1+x-y}{2}$ is always between 0 and 1 . So F has a root in $[0,1]$ if and only if $F\left(\frac{1+x-y}{2}\right)=-\frac{(1+x-y)^{2}}{4}+x \leq 0$. So $4 x \leq(1+x-y)^{2}, 2 \sqrt{x} \leq 1+x-y$, $y \leq 1-2 \sqrt{x}+x=(1-\sqrt{x})^{2}, \sqrt{y} \leq 1-\sqrt{x}$, and finally we have $\sqrt{x}+\sqrt{y} \leq 1$.
10. Answer: $2011^{2}-2011+2=4042112$

Let $f(n)$ denote the maximum number of regions into which n circles can partition the plane. We will show that $f(n)$ is a quadratic polynomial in n. Indeed, let A be a planar arrangement of n circles. Note that A is a graph: Each intersection point is a vertex, and the arcs connecting them are edges. Having recognized this, we can apply Euler's theorem, $V-E+F=2$, to find the number of regions (i.e., F). It is easy to see that an arrangement with the maximum number of vertices is optimal. The maximum number of vertices is $V=2\binom{n}{2}=n(n-1)$, since each circle can intersect each other circle in at most two vertices. In this optimal arrangement, each circle contains $2(n-1)$ vertices and the same number of edges; thus, the total number of edges is $E=2 n(n-1)$. Thus, the desired quantity is $f(n)=E-V+2=n^{2}-n+2$, so our answer is $2011^{2}-2011+2=4042112$.
Alternative Solution: As before, we apply Euler's theorem for planar graphs. Given that circles are defined by quadratic polynomials, it is clear that V and E are each quadratic in n. In particular,

Euler's theorem implies that F is quadratic in n. Moreover, it is easy to check that $f(1)=2, f(2)=4$, and $f(3)=8$. Interpolating gives $f(n)=n^{2}-n+1$, as in the first solution.
11. Answer: $\frac{1}{4}$

If we consider the triangle $A B C$ with side length $A B=x+y, B C=y+z, C A=z+x$, the equation becomes

$$
\frac{|A B C|^{2}}{A B^{2} \cdot B C^{2}}=\frac{\sin ^{2} B}{4} \leq \frac{1}{4}
$$

12. Answer: $x^{2}-4 y-4=0$

Let $O=(0,0,1)$ be the center of the sphere. For a point $X=(x, y, 0)$ on the boundary of the projection, the angle $\angle X P O$ is constant as X varies, since it is just the angle between $O P$ and any tangent from P to the sphere. Considering the case when $X=(0,-1,0)$, we can see that $\angle X P O=45^{\circ}$. Writing this in terms of the dot product, one has $(\overrightarrow{P O} \cdot \overrightarrow{P X})^{2}=\frac{1}{2}|\overrightarrow{P O}|^{2}|\overrightarrow{P X}|^{2}$, which is equivalent to $((0,1,-1) \cdot(x, y+1,-2))^{2}=\frac{1}{2}|(0,1,-1)|^{2}|(x, y+1,-2)|^{2}$, or $(y+3)^{2}=x^{2}+(y+1)^{2}+4$. The answer is $x^{2}-4 y-4=0$.

13. Answer: 2^{2011}

Define $z_{k}=x_{k}+i y_{k}$. Then the equations are equivalent to $z_{k+1}=z_{k}{ }^{2}-2, z_{2012}=z_{1}$. Let α be a solution of $z_{1}=\alpha+\alpha^{-1}$ (which always has two distinct solutions unless $z_{1}=2$ or -2). Then one can check by induction that $z_{k}=\alpha^{2^{k-1}}+\alpha^{-2^{k-1}}$. Since one has $z_{2012}=z_{1}, \alpha^{2^{2011}}+\alpha^{-2^{2011}}=\alpha+\alpha^{-1}$.
Set $N=2^{2011}$ and rewrite the above as $\alpha^{2 N}+1=\alpha^{N-1}+\alpha^{N+1}$, or $\left(\alpha^{N+1}-1\right)\left(\alpha^{N-1}-1\right)=0$. Since N is even, $N+1$ and $N-1$ are relatively prime. So the equations $X^{N+1}=1$ and $X^{N-1}=1$ have only the root 1 in common. Therefore there are $(N+1)+(N-1)-1=2 N-1$ possibilities for α. Meanwhile, any one value of $z_{1}=\alpha+\alpha^{-1}$ corresponds to two choices of α except when $\alpha=1$ or -1 . So our $2 N-2$ choices of $\alpha \neq 1$ together give $N-1$ different solutions for z_{1}, and $\alpha=1$ give a single solution $z=2$. The answer is $N=2^{2011}$.

14. Answer: $\frac{\pi \ln (2)}{8}$

Let I denote the integral we wish to compute. The function $f(x)=\frac{\ln (x+1)}{x^{2}+1}$ does not have an elementary antiderivative. We will use Taylor series to compute I. We can find the Taylor series for the function $\frac{\ln (x+1)}{x^{2}+1}$ using the following formulas:

$$
\begin{aligned}
\ln (x+1) & =x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots \\
\frac{1}{1+x^{2}} & =1-x^{2}+x^{4}-\ldots
\end{aligned}
$$

These formulas aren't good everywhere, but they do hold in $(0,1)$. We have

$$
\begin{aligned}
f(x) & =\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots\right)\left(1-x^{2}+x^{4}-x^{6}+\ldots\right) \\
& =x+\left(-\frac{1}{2}\right) x^{2}+\left(\frac{1}{3}-1\right) x^{3}+\left(-\frac{1}{4}+\frac{1}{2}\right) x^{4}+\left(\frac{1}{5}-\frac{1}{3}+1\right) x^{5}+\ldots
\end{aligned}
$$

In particular, an antiderivative is given by

$$
F(x)=\frac{1}{2} x^{2}+\frac{1}{3}\left(-\frac{1}{2}\right) x^{3}+\frac{1}{4}\left(\frac{1}{3}-1\right) x^{4}+\frac{1}{5}\left(-\frac{1}{4}+\frac{1}{2}\right) x^{5}+\frac{1}{6}\left(\frac{1}{5}-\frac{1}{3}+1\right) x^{6}+\ldots
$$

The definite integral I is given by $F(1)$, i.e., the sum

$$
I=\frac{1}{2}+\frac{1}{3}\left(-\frac{1}{2}\right)+\frac{1}{4}\left(\frac{1}{3}-1\right)+\frac{1}{5}\left(-\frac{1}{4}+\frac{1}{2}\right)+\frac{1}{6}\left(\frac{1}{5}-\frac{1}{3}+1\right)+\ldots
$$

Now we use the facts that

$$
\begin{aligned}
& 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots=\frac{\pi}{4} \\
& 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots=\ln (2)
\end{aligned}
$$

from the Taylor series for $\tan ^{-1}(x)$ and $\ln (x+1)$ respectively. Notice that in the above sum, every number of the form $\frac{1}{r \cdot s}$, where r is even and s is odd, occurs exactly once, with a positive sign if $r+s \equiv 3(\bmod 4)$ and a negative sign if $1(\bmod 4)$. Therefore, it is clear that

$$
\begin{aligned}
I & =\left(1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots\right)\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{6}-\frac{1}{8}+\ldots\right) \\
& =\frac{\pi}{4} \cdot \frac{1}{2}\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots\right) \\
& =\frac{\pi \ln (2)}{8}
\end{aligned}
$$

15. Answer: $\frac{1}{2}$

Note that both $\operatorname{gcd}(a, b-1)$ and $\operatorname{gcd}(a-1, b)$ divide $a+b-1$. Also they are relatively prime, since $\operatorname{gcd}(a, b-1) \mid a$ and $\operatorname{gcd}(a-1, b) \mid a-1$. So their product is less than or equal to $a+b-1$, and therefore by the AM-GM inequality we have

$$
\frac{1}{\operatorname{gcd}(a, b-1)}+\frac{1}{\operatorname{gcd}(a-1, b)} \geq 2 \sqrt{\frac{1}{\operatorname{gcd}(a, b-1) \cdot \operatorname{gcd}(a-1, b)}} \geq \frac{2}{\sqrt{a+b-1}}
$$

Thus $\alpha=\frac{1}{2}$ and $m=2$ suffice. To show that there is no such m for smaller α, let $b=(a-1)^{2}$. Then $\operatorname{gcd}(a, b-1)=a$ and $\operatorname{gcd}(a-1, b)=a-1$, so

$$
\left(\frac{1}{\operatorname{gcd}(a, b-1)}+\frac{1}{\operatorname{gcd}(a-1, b)}\right)(a+b)^{\alpha}=\frac{(2 a-1)\left(a^{2}-a+1\right)^{\alpha}}{a(a-1)}
$$

and the limit when a goes to ∞ is zero if $\alpha<\frac{1}{2}$.

