1. Answer: $2+2 \sqrt{2}$

The path made generates a regular octagon with side length 1 , since the exterior angle of the octagon is 45 deg . Notice that by inscribing the octagon in a square of side length $1+\sqrt{2}$, we can easily calculate that the octagon has area $(1+\sqrt{2})^{2}-4\left(\frac{1}{4}\right)=2+2 \sqrt{2}$.

2. Answer: $\frac{33 \sqrt{3}}{28}$

Looking at cyclic quadrilaterals $A B C D$ and $A C D F$ tells us that $m \angle A C D=m \angle A D C$, so $\triangle A C D$ is equilateral and $m \angle D E A=120^{\circ}$. Now, if we let $m \angle E A D=\theta$, we see that $m \angle C A B=60^{\circ}-\theta \Longrightarrow$ $m \angle A C B=\theta \Longrightarrow \triangle A E D \cong \triangle C B A$. Now all we have to do is calculate side lengths. After creating some $30^{\circ}-60^{\circ}-90^{\circ}$ triangles, it becomes evident that $A C=\sqrt{3}$. Now let $A B=x$, so $B C=2 x$. By applying the Law of Cosines to triangle $A B C$, we find that $x^{2}=\frac{3}{7}$. Hence, the desired area $(A B C D E)=(A C D)+2(A B C)=\frac{(\sqrt{3})^{2} \sqrt{3}}{4}+2 \cdot \frac{1}{2}(x)(2 x)\left(\sin 120^{\circ}\right)=\frac{33 \sqrt{3}}{28}$.
3. Answer: 15

After some angle chasing, we find that $m \angle D B F=m \angle D F B=75^{\circ}$, which implies that $D F=D B$. Hence the desired perimeter is equal to $A F-B F+A E+F E=20-B F+F E$.
By the law of sines, $\frac{F E}{\sin 30^{\circ}}=\frac{10}{\sin 75^{\circ}} \Longrightarrow F E=\frac{5}{\frac{\sqrt{6}+\sqrt{2}}{4}}=5 \sqrt{6}-5 \sqrt{2}$.
Now, to find $\overline{B F}$, draw the altitude from O to $\overline{A B}$ intersecting $\overline{A B}$ at P. This forms a $30^{\circ}-60^{\circ}-90^{\circ}$ triangle, so we can see that $A P=5 \sqrt{3} / 2=\frac{10-B F}{2} \Longrightarrow B F=10-5 \sqrt{3}$. Hence, the desired perimeter is $20+(5 \sqrt{6}-5 \sqrt{2})-(10-5 \sqrt{3})=10-5 \sqrt{2}+5 \sqrt{3}+5 \sqrt{6}$, so the answer is $10-5+5+5=15$.
4. Answer: $5+\sqrt{19}$

Rotate the figure around A by 60° so that C coincides B. Let $B^{\prime}, C^{\prime}, D^{\prime}, E^{\prime}$ be the points corresponding to B, C, D, E in the rotated figure. Since $\angle E^{\prime} A D=\angle E^{\prime} A C^{\prime}+\angle C^{\prime} A D=\angle E A C+\angle B A D=30^{\circ}=$ $\angle E A D, E^{\prime} A=E A$ and $D A=D^{\prime} A$, one has $E^{\prime} D=E D$. So $B C=B D+D E+E C$ can be found if we know $E^{\prime} D$. But $E^{\prime} D=\sqrt{E^{\prime} B^{2}+B D^{2}-2 \cdot E^{\prime} B \cdot B D \cdot \cos 120^{\circ}}=\sqrt{19}$, so $B C=2+\sqrt{19}+3=$ $5+\sqrt{19}$.

5. Answer: $10 \sqrt{2}$

We have $\triangle A D E \sim \triangle C B E$, and their length ratio is $A D: C B=1: 2$. Let $A E=p$ and $D E=q$. Then we have $A B=B E-A E=2 D E-A E=2 q-p$ and $C D=2 p-q$. Solving for p and q, we have $p=4$ and $q=5$. Similarly we have $F C=8$ and $F D=10$. Let $\angle B=\theta$. Then $\angle F D E=\pi-\theta$. Apply the Law of Cosines to $\triangle E B F$ to get

$$
E F^{2}=B E^{2}+B F^{2}-2 B E \cdot B F \cdot \cos \theta=10^{2}+20^{2}-2 \cdot 10 \cdot 20 \cos \theta=500-400 \cos \theta
$$

and to $\triangle E D F$ to get

$$
E F^{2}=D E^{2}+D F^{2}+2 \cdot D E \cdot D F \cos \theta=5^{2}+10^{2}-2 \cdot 5 \cdot 10 \cos \theta=125+100 \cos \theta
$$

Solving for $E F^{2}$, we get $E F^{2}=200$.
6. Answer: $\pi-\tan ^{-1}\left(\frac{1}{d}\right)\left(\right.$ or $\left.\pi / 2+\tan ^{-1} d\right)$ or other equivalent form

Construct points $C_{1}, C_{2}, C_{3}, \cdots$ on l_{1} progressing in the same direction as the A_{i} such that $C_{1}=$ A_{1} and $C_{n} C_{n+1}=1$. Thus we have $C_{1}=A_{1}, C_{3}=A_{2}, C_{5}=A_{3}$, etc., with $C_{2 n-1}=A_{n}$ in general. We can write $\angle A_{i} B_{i} A_{i+1}=\angle C_{2 i-1} B_{i} C_{2 i+1}=\angle C_{i} B_{i} C_{2 i+1}-\angle C_{i} B_{i} C_{2 i-1}$. Observe that $\triangle C_{i} B_{i} C_{k}$ (for any k) is a right triangle with legs of length d and $k-i$, and $\angle C_{i} B_{i} C_{k}=\tan ^{-1} \frac{k-i}{d}$. So $\angle C_{i} B_{i} C_{2 i+1}-\angle C_{i} B_{i} C_{2 i-1}=\tan ^{-1} \frac{i+1}{d}-\tan ^{-1} \frac{i-1}{d}$. The whole sum is therefore

$$
\sum_{i=1}^{\infty}\left(\tan ^{-1} \frac{i+1}{d}-\tan ^{-1} \frac{i-1}{d}\right)
$$

which has nth partial sum

$$
\tan ^{-1} \frac{n+1}{d}+\tan ^{-1} \frac{n}{d}-\tan ^{-1} \frac{1}{d}
$$

so it converges to $\pi-\tan ^{-1} \frac{1}{d}$.
7. Answer: $\sqrt{5}$

Rotate triangle $A P B$ around A by 90 degrees as in the given figure. Let P^{\prime} and B^{\prime} be the rotated images of P and B respectively. Then we have $B^{\prime} P^{\prime}=B P, P^{\prime} P=\sqrt{2} A P$ so

$$
\sqrt{2} A P+B P+C P=C P=P P^{\prime}+P^{\prime} B^{\prime} \leq C B^{\prime}=\sqrt{5}
$$

8. Answer: $\frac{\pi}{6}$

Consider the cube to be of side length 2 and divide the answer by 4 later. Set the coordinates of the vertices of the cube to be $(\pm 1, \pm 1, \pm 1)$. Then the plane going through an equilateral triangle can be described by the equation $x+y+z=1$. The distance to the plane from the origin is $\frac{1}{\sqrt{3}}$, as $(1 / 3,1 / 3,1 / 3)$ is the foot of the perpendicular from $(0,0,0)$. Thus the radius of the circle is $\sqrt{1-\left(\frac{1}{\sqrt{3}}\right)^{2}}=\sqrt{\frac{2}{3}}$, so the area is $\frac{2}{3} \pi$. In the case of the unit cube we should divide this by 4 to get the answer $\frac{\pi}{6}$.
9. Answer: $\frac{49}{390}$

First we shall find $\frac{\text { area }(\triangle A D C)}{\text { area }(\triangle A B C)}$: Since $\triangle A^{\prime} R B \sim C C^{\prime} B$ and $A^{\prime} B=\frac{1}{5} B C$, it follows that $A^{\prime} R=\frac{1}{5} C S$. Then $\operatorname{area}\left(\triangle A A^{\prime} C^{\prime}\right)=\frac{1}{2} A^{\prime} R \times A C^{\prime}=\frac{1}{2}\left(\frac{1}{5} C S\right)\left(\frac{1}{3} A B\right)=\frac{1}{15}\left(\frac{1}{2} C S \times A B\right)=\frac{1}{15}$ area $(\triangle A B C)$. Similarly, $\operatorname{area}\left(\triangle A A^{\prime} C\right)=\frac{1}{2} A P \times A^{\prime} C=\frac{1}{2} A P\left(\frac{4}{5} B C\right)=\frac{4}{5} \operatorname{area}(\triangle A B C)$. So $\frac{\operatorname{area}\left(\triangle A A^{\prime} C^{\prime}\right)}{\text { area }\left(\triangle A A^{\prime} C\right)}=\frac{1}{12}$. Since $\triangle A A^{\prime} C^{\prime}$ and $\triangle A A^{\prime} C$ share the same base, $\frac{C^{\prime} T}{Q C}=\frac{1}{12}$. Since $\triangle C^{\prime} T D \sim \triangle C Q D, \frac{C^{\prime} D}{C D}=\frac{1}{12}$. Using similar arguments, since $A C^{\prime}=\frac{1}{3} A B$, area $\left(\triangle A C^{\prime} C\right)=\frac{1}{3} \operatorname{area}(\triangle A B C)$. Since $C D=\frac{12}{13} C^{\prime} C$, area $(\triangle A D C)=$ $\frac{12}{13} \operatorname{area}\left(\triangle A C^{\prime} C\right)=\frac{12}{13} \times \frac{1}{3}$ area $(\triangle A B C)$. Using the same technique, we can find $\frac{\operatorname{area}(\triangle B F C)}{\operatorname{area}(\triangle A B C)}$ and $\frac{\operatorname{area}(\triangle A E B)}{\operatorname{area}(\triangle A B C)}$. We will just briefly outline the remaining process: $\frac{\operatorname{area}\left(\triangle C C^{\prime} B^{\prime}\right)}{\operatorname{area}\left(\triangle C C^{\prime} B\right)}=\frac{\frac{1}{2} \times \frac{1}{3}}{\frac{2}{3}}=\frac{1}{4}$. So $\frac{B^{\prime} F}{B F}=$ $\frac{1}{4}$. Then $\operatorname{area}\left(\triangle B B^{\prime} C\right)=\frac{1}{2} \operatorname{area}(\triangle A B C)$, so $\operatorname{area}(\triangle B F C)=\frac{4}{5} \operatorname{area}\left(\triangle B B^{\prime} C\right)=\frac{2}{5} \operatorname{area}(\triangle A B C)$.

Likewise, $\frac{\operatorname{area}\left(\triangle B B^{\prime} A^{\prime}\right)}{\operatorname{area}\left(\triangle B B^{\prime} A\right)}=\frac{\frac{1}{5} \times \frac{1}{2}}{\frac{1}{2}}=\frac{1}{5}$. So $\frac{A^{\prime} E}{A E}=\frac{1}{5}$. Then $\operatorname{area}\left(\triangle A A^{\prime} B\right)=\frac{1}{5} \operatorname{area}(\triangle A B C)$, so $\operatorname{area}(\triangle A E B)=\frac{5}{6} \operatorname{area}\left(\triangle A A^{\prime} B\right)=\frac{1}{6} \operatorname{area}(\triangle A B C)$.
Then $\frac{\operatorname{area}(\triangle D E F)}{\operatorname{area}(\triangle A B C)}=1-\frac{\operatorname{area}(\triangle A D C)}{\operatorname{area}(\triangle A B C)}-\frac{\operatorname{area}(\triangle B F C)}{\operatorname{area}(\triangle A B C)}-\frac{\operatorname{area}(\triangle A E B)}{\operatorname{area}(\triangle A B C)}=1-\frac{12}{39}-\frac{2}{5}-\frac{1}{6}=\frac{49}{390}$.

10. Answer: $2 \sqrt{43}$

We claim that in general, the answer is $\sqrt{\frac{2}{3}\left(a^{2}+b^{2}+c^{2}+4 \sqrt{3} S\right)}$, where S is the area of $A B C$.
Suppose that $P Q R$ is an equilateral triangle satisfying the conditions. Then $\angle B P C=\angle C Q A=$ $\angle A R B=60^{\circ}$. The locus of points satisfying $\angle B X C=60^{\circ}$ is part of a circle O_{a}. Draw O_{b} and O_{c} similarly. These three circles meet at a single point X inside the triangle, which is the unique point satisfying $\angle B X C=\angle C X A=\angle A X B=120^{\circ}$. Then the choice of P on O_{a} determines Q and R : those two points should also be on O_{b} and O_{c} respectively, and line segments $P C Q$ and $P B R$ should form sides of the triangle. Now one should find the maximum of $P Q$ under these conditions. Note that $\angle B P X$ and $\angle B R X$ do not depend on the choice of P, so triangle $P X R$ has the same shape regardless of our choice. In particular, the ratio of $P X$ to $P R$ is constant, so $P R$ is maximized when $P X$ is the diameter of O_{a}. This requires $P Q, Q R, R P$ to be perpendicular to $X C, X A, X B$ respectively.
From this point there may be several ways to calculate the answer. One way is to observe that $P Q=\frac{2}{\sqrt{3}}(A X+B X+C X)$ by considering $(P Q R)=(P X Q)+(Q X R)+(R X P) . A X+B X+C X$ can be computed by the usual rotation trick for the Fermat point: rotate $\triangle B X A 60^{\circ}$ around B to $\triangle B X^{\prime} A^{\prime}$. Observe that $\triangle B X X^{\prime}$ is equilateral, and so $A^{\prime}, X^{\prime}, X$, and C are collinear. Hence, $A^{\prime} C=A X+B X+C X$, and we can apply the Law of Cosines to $\triangle A^{\prime} B C$ to get that $A^{\prime} C^{2}=c^{2}+a^{2}-$ $2 a c \cos \left(B+60^{\circ}\right)=a^{2}+c^{2}+2 a c \sin 60^{\circ} \sin B-2 a c \cos 60^{\circ} \cos B=a^{2}+c^{2}+2 S \sqrt{3}-\frac{1}{2}\left(a^{2}+c^{2}-b^{2}\right)=$ $\frac{a^{2}+b^{2}+c^{2}}{2}+2 S \sqrt{3} \Longrightarrow P Q=\sqrt{\frac{2}{3}\left(a^{2}+b^{2}+c^{2}+4 \sqrt{3} S\right)}$ (where S is again the area of $A B C$). Plugging in our values for a, b, and c, and using Heron's formula to find $S=\sqrt{10 * 5 * 3 * 2}=10 \sqrt{3}$, we can calculate $P Q=2 \sqrt{43}$.

