1. Answer: $4 \ln (x-2)-4 \ln (x-1)+3 /(x-1)$ or equivalent forms

Expand by partial fractions:

$$
\frac{x+2}{(x-1)^{2}(x-2)}=\frac{A}{x-2}+\frac{B}{x-1}+\frac{C}{(x-1)^{2}}
$$

Then $x+2=A(x-1)^{2}+B(x-2)(x-1)+C(x-2)$. If $x=2$, then $4=A$. If $x=1$, then $C=-3$. If $x=0$, then $2=4+2 B+6 \Rightarrow B=-4$. So

$$
\begin{aligned}
\int \frac{x+2}{(x-1)^{2}(x-2)} d x & =\int\left[\frac{A}{x-2}+\frac{B}{x-1}+\frac{C}{(x-1)^{2}}\right] d x \\
& =4 \ln (x-2)-4 \ln (x-1)+3 /(x-1)
\end{aligned}
$$

2. Answer: $\frac{\pi^{2}}{4}$

By taking the second derivative, we see that the points of inflection occur when $-\cos x=0$, so $x=\frac{\pi}{2}, \frac{3 \pi}{2}$. At $\frac{\pi}{2}$, the slope of the tangent line is the derivative evaluated at this point, which is $-\sin \left(\frac{\pi}{2}\right)=-1$. So the tangent line has equation $y=-x+b$, and since $\cos \left(\frac{\pi}{2}\right)=0,0=-\frac{\pi}{2}+b$ and so the tangent line is given by $y=-x+\frac{\pi}{2}$. Similarly, we can find that the tangent line at $\frac{3 \pi}{2}$ is $y=x-\frac{3 \pi}{2}$. The intersection of the two tangent lines forms the vertex of the triangle, which occurs when $-x+\frac{\pi}{2}=x-\frac{3 \pi}{2}$, or at $x=\pi$. At this point, both tangent lines equal $-\frac{\pi}{2}$. Hence the triangle formed has height $\frac{\pi}{2}$. The tangent lines cross the x-axis when $y=0$, giving $\frac{\pi}{2}$ and $\frac{3 \pi}{2}$, which are separated by π. Hence the area of the triangle is $\frac{1}{2} \cdot \frac{\pi}{2} \cdot \pi=\frac{\pi^{2}}{4}$.
3. Answer: $(1,2 / 3,1 / 2,4 / 15)$

Just compute the Taylor expansion of $f^{\prime \prime}(x)-2 x f^{\prime}(x)-2 f(x)$ to the third term, which is

$$
\left(2 a+6 b x+12 c x^{2}+20 d x^{3}+\cdots\right)-\left(2 x+4 a x^{2}+6 b x^{3}+\cdots\right)-\left(2+2 x+2 a x^{2}+2 b x^{3}+\cdots\right)
$$

All coefficients should be zero, so $2 a-2=0,6 b-4=0,12 c-6 a=0$ and $20 d-8 b=0$. Solving these equations gives the answer.

4. Answer: $\ln (2)$

Note that $\frac{1}{1+x}=1-x+x^{2}-x^{3}+\ldots$ and that $\ln (x+1)=\int \frac{1}{1+x} d x=C+x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{3}}{4}+\ldots$. Since $\ln (1)=0=C$, we set $C=0$. Evaluating at $x=1$, we get that $\ln (2)=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots$.
5. Answer: $f(x)=(2 x-1) e^{x}$

Differentiate both sides to get

$$
f^{\prime}(x)=f^{\prime}(x)+\int_{0}^{x} e^{x-y} f^{\prime}(y) d y-\left(x^{2}+x\right) e^{x}
$$

But

$$
\int_{0}^{x} e^{x-y} f^{\prime}(y) d y=f(x)+\left(x^{2}-x+1\right) e^{x}
$$

so by substituting it we get

$$
f(x)+\left(x^{2}-x+1\right) e^{x}-\left(x^{2}+x\right) e^{x}=0
$$

and $f(x)=(2 x-1) e^{x}$.
6. Answer: $\frac{5 \sqrt{5}+4}{6}$

First, we eliminate the absolute value by finding the intervals on which the expression inside is positive and negative. Sketching $\sin (2 x)$ and $\sin (3 x)$ suggests that there are two points $0<x<\pi$ such that $\sin (2 x)=\sin (3 x)$. The identity $\sin (x)=\sin (\pi-x)$ gives us the solution $x=\frac{\pi}{5}$, and $\sin (x)=\sin (3 \pi-x)$
gives us $x=\frac{3 \pi}{5}$. Then we have $\sin (3 x)>\sin (2 x)$ on the intervals $\left(0, \frac{\pi}{5}\right)$ and $\left(\frac{3 \pi}{5}, \pi\right)$ but $\sin (2 x)>$ $\sin (3 x)$ on $\left(\frac{\pi}{5}, \frac{3 \pi}{5}\right)$. So the integral becomes:

$$
\begin{aligned}
\int_{0}^{\pi}|\sin (2 x)-\sin (3 x)| \mathrm{d} x=\int_{0}^{\frac{\pi}{5}}[\sin (3 x)- & \sin (2 x)] \mathrm{d} x \\
& +\int_{\frac{\pi}{5}}^{\frac{3 \pi}{5}}[\sin (2 x)-\sin (3 x)] \mathrm{d} x+\int_{\frac{3 \pi}{5}}^{\pi}[\sin (3 x)-\sin (2 x)] \mathrm{d} x
\end{aligned}
$$

Next, we let $F(x)$ equal $\frac{\cos (2 x)}{2}-\frac{\cos (3 x)}{3}$, so that $F^{\prime}(x)=\sin (3 x)-\sin (2 x)$. Then the integral simplifies to:

$$
\begin{aligned}
& {[F} \\
& \left.\quad\left(\frac{\pi}{5}\right)-F(0)\right]-\left[F\left(\frac{3 \pi}{5}\right)-F\left(\frac{\pi}{5}\right)\right]+\left[F(\pi)-F\left(\frac{3 \pi}{5}\right)\right] \\
& \quad=F(\pi)+2 F\left(\frac{\pi}{5}\right)-2 F\left(\frac{3 \pi}{5}\right)-F(0) \\
& \quad=\frac{1}{2}+\frac{1}{3}+\cos \frac{2 \pi}{5}-\frac{2}{3} \cos \frac{3 \pi}{5}-\cos \frac{6 \pi}{5}+\frac{2}{3} \cos \frac{9 \pi}{5}-\frac{1}{2}+\frac{1}{3} \\
& \quad=\frac{2}{3}+\frac{5}{3} \cos \frac{2 \pi}{5}+\frac{5}{3} \cos \frac{\pi}{5}
\end{aligned}
$$

Now we use the identities $\cos \frac{\pi}{5}=\frac{\sqrt{5}+1}{4}$ and $\cos \frac{2 \pi}{5}=\frac{\sqrt{5}-1}{4}$ to simplify this further:

$$
\begin{aligned}
\frac{2}{3}+\frac{5}{3} \cos \frac{2 \pi}{5}+\frac{5}{3} \cos \frac{\pi}{5} & =\frac{2}{3}+\frac{5}{3}\left(\frac{\sqrt{5}-1}{4}+\frac{\sqrt{5}+1}{4}\right) \\
& =\frac{2}{3}+\frac{5 \sqrt{5}}{6} \\
& =\frac{5 \sqrt{5}+4}{6}
\end{aligned}
$$

7. Answer: 12600

Since $f^{(n)}(0)=a_{n} n$!, where a_{n} is the nth Taylor series coefficient, we just need to find the Taylor series of f and read off the appropriate coefficient. The Taylor series is given by

$$
f(x)=x^{3}\left(1+\frac{x^{2}}{1!}+\frac{x^{4}}{2!}+\cdots\right)\left(1+x^{2}+x^{4}+\cdots\right)
$$

The coefficient of x^{7} is $\frac{1}{2!}+\frac{1}{1!}+1=\frac{5}{2}$, so $f^{(7)}(0)=7!\cdot \frac{5}{2}=12600$.
8. Answer: $\frac{3}{2}$

Differentiate the equation to get

$$
\cos (x)+\frac{d y}{d x} \cos (y)=0
$$

and again

$$
-\sin (x)+\frac{d^{2} y}{d x^{2}} \cos (y)-\left(\frac{d y}{d x}\right)^{2} \sin (y)=0
$$

By solving these we have

$$
\frac{d y}{d x}=-\frac{\cos (x)}{\cos (y)}
$$

and

$$
\frac{d^{2} y}{d x^{2}}=\frac{\sin (x) \cos ^{2}(y)+\sin (y) \cos ^{2}(x)}{\cos ^{3}(y)}
$$

Let $\sin (x)=t$, then $\sin (y)=1-t$. Also $\cos (x)=\sqrt{1-t^{2}}$ and $\cos (y)=\sqrt{1-(1-t)^{2}}=\sqrt{t(2-t)}$. Substituting it gives

$$
\frac{d^{2} y}{d x^{2}}=\frac{t^{2}(2-t)+(1-t)\left(1-t^{2}\right)}{t^{3 / 2}(1-2 t)^{3 / 2}}=t^{-3 / 2} \frac{t^{2}-t+1}{(1-2 t)^{3 / 2}}
$$

Since $\lim _{x \rightarrow 0} \frac{x}{t}=1, \alpha=\frac{3}{2}$ should give the limit $\lim _{x \rightarrow 0} x^{\alpha} \frac{d^{2} y}{d x^{2}}=\frac{\sqrt{2}}{4}$. All other values of α will make this limit undefined or zero.
9. Answer: $\frac{\pi}{4}$

We make the substitution, $x=\frac{\pi}{2}-y$ (note that the actual variable of integration is irrelevant so we leave it as x). Then we have:

$$
\int_{0}^{\frac{\pi}{2}} \frac{d x}{1+(\tan x)^{\pi}}=\int_{\frac{\pi}{2}}^{0} \frac{-d x}{1+\tan \left(\frac{\pi}{2}-x\right)^{\pi}}=\int_{0}^{\frac{\pi}{2}} \frac{d x}{1+(\cot x)^{\pi}}=\int_{0}^{\frac{\pi}{2}} \frac{(\tan x)^{\pi} d x}{(\tan x)^{\pi}+1}
$$

Then we add the original integral to both sides:

$$
2 \int_{0}^{\frac{\pi}{2}} \frac{d x}{1+(\tan x)^{\pi}}=\int_{0}^{\frac{\pi}{2}} \frac{1}{1+(\tan x)^{\pi}}+\frac{(\tan x)^{\pi}}{1+(\tan x)^{\pi}} d x=\int_{0}^{\frac{\pi}{2}} \frac{1+(\tan x)^{\pi}}{1+(\tan x)^{\pi}} d x=\int_{0}^{\frac{\pi}{2}} d x=\frac{\pi}{2}
$$

So the integral we want is $\frac{\pi}{4}$.
10. Answer: $\frac{1}{2010(\ln 2)^{2010}}$

Make the substitution $\frac{1}{x}=e^{t}-1$, so that $-\frac{e^{t} d t}{\left(e^{t}-1\right)^{2}}=d x$. This transforms the original integral into

$$
\begin{aligned}
\int_{0}^{1} \frac{d x}{x(x+1)\left(\ln \left(1+\frac{1}{x}\right)\right)^{2011}} & =\int_{\ln 2}^{\infty} \frac{e^{t}\left(e^{t}-1\right)^{2} d t}{e^{t}\left(e^{t}-1\right)^{2} t^{2011}} d t=\int_{\ln 2}^{\infty} \frac{d t}{t^{2011}} d t \\
& =-\left.\frac{1}{2010 t^{2010}}\right|_{\ln 2} ^{\infty}=\frac{1}{2010(\ln 2)^{2010}}
\end{aligned}
$$

