1. Answer: $\$ 88$

Let x be the amount of money he invests each year. We make the following table about the amount of money he has:

Year	Money on Jan 1	Money on Dec 31
8	x	$2 x$
9	$2 x+x$	$2^{2} x+2 x$
10	$2^{2} x+2 x+x$	$2^{3} x+2^{2} x+2 x$
\ldots	\ldots	\ldots
17	$2^{9} x+2^{8} x+\ldots+2 x+x$	$2^{10} x+2^{9} x+\ldots+2 x$

Sammy needs $4 \times \$ 45000=\$ 180000$. Then $180000=2^{10} x+2^{9} x+\ldots+2 x=2\left(2^{9}+2^{8}+\ldots+2+1\right) x=$ $2\left(2^{10}-1\right) x=2046 x \Rightarrow x=180000 / 2046 \simeq 87.97$ so the least integer amount of money he needs to invest is $\$ 88$.
2. Answer: $\left(-\frac{3}{5}, \frac{4}{5}\right)$

From the first equation, we get that $y^{2}=1-x^{2}$. Plugging this into the second one, we are left with

$$
\begin{aligned}
2 x^{2} \pm 2 x \sqrt{1-x^{2}}+1-x^{2}-2 x \mp 2 \sqrt{1-x^{2}}=0 & \Rightarrow(x-1)^{2}=\mp 2 \sqrt{1-x^{2}}(x-1) \\
& \Rightarrow x-1=\mp 2 \sqrt{1-x^{2}} \text { assuming } x \neq 1 \\
& \Rightarrow x^{2}-2 x+1=4-4 x^{2} \Rightarrow 5 x^{2}-2 x-3=0
\end{aligned}
$$

The quadratic formula yields that $x=\frac{2 \pm 8}{10}=1,-\frac{3}{5}$ (we said that $x \neq 1$ above but we see that it is still valid). If $x=1$, the first equation forces $y=0$ and we easily see that this solves the second equation. If $x=-\frac{3}{5}$, then clearly y must be positive or else the second equation will sum five positive terms. Therefore $y=\sqrt{1-\frac{9}{25}}=\sqrt{\frac{16}{25}}=\frac{4}{5}$. Hence the other point is $\left(-\frac{3}{5}, \frac{4}{5}\right)$.
3. Answer: $x=-1,0,2$

There are four intervals to consider, each with their own restrictions. Consider the case in which $x>\sqrt{2}$. Then the equation becomes $(x-1)\left(x^{2}-2\right)-2=x(x-2)(x+1)=0$. Thus, $x=2$ is the only rational root for $x>\sqrt{2}$. Consider the case in which $-\sqrt{2}<x<1$. Then the equation becomes $(x-1)\left(x^{2}-2\right)-2=x(x-2)(x+1)=0$. Thus, $x=0$ and $x=-1$ are the rational roots for $-\sqrt{2}<x<1$. Consider the case in which $x<-\sqrt{2}$ or the case in which $1<x<\sqrt{2}$. In these cases, the equation becomes $(1-x)\left(x^{2}-2\right)-2=-x^{3}+x^{2}+2 x-4$. By the rational root theorem, the rational roots of this polynomial can only be $\pm 4, \pm 2, \pm 1$ and a quick check shows that none of these are roots, so this polynomial has no rational roots.

4. Answer: $\frac{9}{4}$

First notice that the polynomial

$$
g(x)=x^{4}\left(\frac{1}{x^{4}}+\frac{3}{x^{3}}+\frac{3}{x}+2\right)=2 x^{4}+3 x^{3}+3 x+1
$$

is a polynomial with roots $\frac{1}{r}, \frac{1}{s}, \frac{1}{t}, \frac{1}{u}$. Therefore, it is sufficient to find the sum of the squares of the roots of $g(x)$, which we will denote as r_{1} through r_{4}. Now, note that

$$
r_{1}^{2}+r_{2}^{2}+r_{3}^{2}+r_{4}^{2}=\left(r_{1}+r_{2}+r_{3}+r_{4}\right)^{2}-\left(r_{1} r_{2}+r_{1} r_{3}+r_{1} r_{4}+r_{2} r_{3}+r_{2} r_{4}+r_{3} r_{4}\right)=\left(-\frac{a_{3}}{a_{4}}\right)^{2}-\frac{a_{2}}{a_{4}}
$$

by Vieta's Theorem, where a_{n} denotes the coefficient of x^{n} in $g(x)$. Plugging in values, we get that our answer is $\left(-\frac{3}{2}\right)^{2}-0=\frac{9}{4}$.
5. Answer: $\frac{33}{2}$

Note that $\frac{7 n+32}{n(n+2)}=\frac{16}{n}-\frac{9}{n+2}$ so that

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{(7 n+32)}{n(n+2)} \frac{3^{n}}{4^{n}} & =\sum_{n=1}^{\infty} \frac{16}{n} \frac{3^{n}}{4^{n}}-\sum_{n=1}^{\infty} \frac{9}{n+2} \frac{3^{n}}{4^{n}} \\
& =\sum_{n=1}^{\infty} \frac{16}{n} \frac{3^{n}}{4^{n}}-\sum_{n=1}^{\infty} \frac{16}{n+2} \frac{3^{n+2}}{4^{n+2}} \\
& =\sum_{n=1}^{\infty} \frac{16}{n} \frac{3^{n}}{4^{n}}-\sum_{n=3}^{\infty} \frac{16}{n} \frac{3^{n}}{4^{n}} \\
& =\frac{16}{1} \frac{3}{4}+\frac{16}{2} \frac{9}{16}=\frac{33}{2}
\end{aligned}
$$

6. Answer: $\left(-3^{1005}-1\right) x+\left(-2 \cdot 3^{1005}-1\right)$

The standard method is to use the third root of unity $\omega, \omega^{2}+\omega+1=0$. Let $(x+2)^{2011}-(x+1)^{2011}=$ $\left(x^{2}+x+1\right) Q(x)+a x+b$ and substitute $x=\omega$. Then $a \omega+b=(\omega+2)^{2011}-(\omega+1)^{2011}$. Note that $\omega+2$ has size $\sqrt{3}$ and argument $\pi / 6$, so $(\omega+2)^{6}=-3^{3}$. Also $\omega+1$ has magnitude 1 and argument $\pi / 3$, so $(\omega+1)^{6}=1$. Using this and $2011=6 \cdot 335+1$, we get that $a \omega+b=\left(-3^{1005}-1\right) \omega+\left(-2 \cdot 3^{1005}-1\right)$. Another solution is to note that $(x+2)^{2} \equiv x^{2}+4 x+4 \equiv-3 x^{2}\left(\bmod x^{2}+x+1\right)$ and $(x+1)^{2} \equiv$ $x^{2}+2 x+1 \equiv x\left(\bmod x^{2}+x+1\right)$. Then we have $x^{3} \equiv 1\left(\bmod x^{2}+x+1\right)$ and we can proceed by using periodicity.

7. Answer: $\frac{8045}{2012}$

Let $y_{1}, y_{2}, \cdots, y_{2010}$ be the 2010 numbers distinct from x. Then $y_{1}+y_{2}+\cdots+y_{2010}=2012-x$ and $\frac{1}{y_{1}}+\frac{1}{y_{2}}+\cdots+\frac{1}{y_{2010}}=2012-\frac{1}{x}$. Applying the Cauchy-Schwarz inequality gives

$$
\left(\sum_{i=1}^{2010} y_{i}\right)\left(\sum_{i=1}^{2010} \frac{1}{y_{i}}\right)=(2012-x)\left(2012-\frac{1}{x}\right) \geq 2010^{2}
$$

so $2012^{2}-2012\left(x+x^{-1}\right)+1-2010^{2} \geq 0, x+x^{-1} \leq 8045 / 2012$.
8. Answer: $2-\frac{1}{\mathbf{2}^{2010}}$

We analyze $Q(x)=P(2 x)-P(x)$. One can observe that $Q(x)-1$ has the powers of 2 starting from $1,2,4, \cdots$, up to 2^{2010} as roots. Since Q has degree 2011, $Q(x)-1=A(x-1)(x-2) \cdots\left(x-2^{2010}\right)$ for some A. Meanwhile $Q(0)=P(0)-P(0)=0$, so

$$
Q(0)-1=-1=A(-1)(-2) \cdots\left(-2^{2010}\right)=-2^{(2010 \cdot 2011) / 2} A
$$

Therefore $A=2^{-(1005 \cdot 2011)}$. Finally, note that the coefficient of x is same for P and $Q-1$, so it equals $A\left(-2^{0}\right)\left(-2^{1}\right) \cdots\left(-2^{2010}\right)\left(\left(-2^{0}\right)+\left(-2^{-1}\right)+\cdots+\left(-2^{-2010}\right)\right)=\frac{A \cdot 2^{1005 \cdot 2011}\left(2^{2011}-1\right)}{2^{2010}}=2-\frac{1}{2^{2010}}$.
9. Answer: - 665

Since the equation

$$
P_{k}(x)=P_{k}(x-1)+x^{k}
$$

has all integers ≥ 2 as roots, the equation is an identity, so it holds for all x. Now we can substitute $x=-1,-2,-3,-4, \cdots$ to prove

$$
P_{k}(-n)=-\sum_{i=1}^{n-1}(-i)^{k}
$$

so $P_{7}(-3)+P_{6}(-4)=-(-1)^{6}-(-2)^{6}-(-3)^{6}-(-1)^{7}-(-2)^{7}=-665$.
10. Answer: 10

Note that if r is a root of P then r^{2} is also a root. Therefore $r, r^{2}, r^{2^{2}}, r^{2^{3}}, \cdots$, are all roots of P. Since P has a finite number of roots, two of these roots should be equal. Therefore, either $r=0$ or $r^{N}=1$ for some $N>0$.
If all roots are equal to 0 or 1 , then P is of the form $a x^{b}(x-1)^{(4-b)}$ for $b=0, \ldots, 4$.
Now suppose this is not the case. For such a polynomial, let q denote the largest integer such that $r=e^{2 \pi i \cdot p / q}$ is a root for some integer p coprime to q. We claim that the only suitable $q>1$ are $q=3$ and $q=5$.
First note that if r is a root then one of \sqrt{r} or $-\sqrt{r}$ is also a root. So if q is even, then one of $e^{2 \pi i \cdot p / 2 q}$ or $e^{2 \pi i \cdot p+q / 2 q}$ should also be root of p, and both p / q and $(p+q) / 2 q$ are irreducible fractions. This contradicts the assumption that q is maximal. Therefore q must be odd. Now, if $q>6$, then $r^{-2}, r^{-1}, r, r^{2}, r^{4}$ should be all distinct, so $q \leq 6$. Therefore $q=5$ or 3 .
If $q=5$, then the value of p is not important as P has the complex fifth roots of unity as its roots, so $P=a\left(x^{4}+x^{3}+x^{2}+x+1\right)$. If $q=3$, then P is divisible by $x^{2}+x+1$. In this case we let $P(x)=a\left(x^{2}+x+1\right) Q(x)$ and repeating the same reasoning we can show that $Q(x)=x^{2}+x+1$ or $Q(x)$ is of form $x^{b}(x-1)^{2-b}$.
Finally, we can show that exactly one member of all 10 resulting families of polynomials fits the desired criteria. Let $P(x)=a(x-r)(x-s)(x-t)(x-u)$. Then, $P(x) P(-x)=a^{2}\left(x^{2}-r^{2}\right)\left(x^{2}-s^{2}\right)\left(x^{2}-\right.$ $\left.t^{2}\right)\left(x^{2}-u^{2}\right)$. We now claim that r^{2}, s^{2}, t^{2}, and u^{2} equal r, s, t , and u in some order. We can prove this noting that the mapping $f(x)=x^{2}$ maps 0 and 1 to themselves and maps the third and fifth roots of unity to another distinct third or fifth root of unity, respectively. Hence, for these polynomials, $P(x) P(-x)=a^{2}\left(x^{2}-r\right)\left(x^{2}-s\right)\left(x^{2}-t\right)\left(x^{2}-u\right)=a P\left(x^{2}\right)$, so there exist exactly 10 polynomials that fit the desired criteria, namely the ones from the above 10 families with $a=1$.

