1. Answer: $\frac{12}{17}$

There are 21 ways out of 36 to roll two dice that sum up to a number greater than 6 . The probability that the mathematician wins on his first turn is $21 / 36=7 / 12$. For him to wins in the second round, both he and the physicist must also lose in the first round, so the probability is $\left(\frac{5}{12}\right)^{2} \frac{7}{12}$, and so on. Thus, the total probability is

$$
\begin{aligned}
\frac{7}{12}+\left(\frac{5}{12}\right)^{2} \frac{7}{12}+\left(\frac{5}{12}\right)^{4} \frac{7}{12}+\ldots & =\left(1+\frac{25}{144}+\left(\frac{25}{144}\right)^{2}+\ldots\right) \times \frac{7}{12} \\
& =\frac{144}{119} \times \frac{7}{12}=\frac{12}{17}
\end{aligned}
$$

2. Answer: $\frac{3}{8}$

Assume without loss of generality that the first person gets a correct nametag. Let's call the other people $\mathrm{B}, \mathrm{C}, \mathrm{D}$, and E . We can order the four people in nine ways such that none of the persons gets his own nametag; CBED, CDEB, CEBD, DBEC, DEBC, DECB, EBCD, EDBC, EDCB. Therefore, the desired probability is $\frac{9}{4!}=\frac{3}{8}$.
Alternative Solution: The selection of random nametags amounts to a selection of a random permutation of the five students from the symmetric group S_{5}. The condition will be met if and only if the selected permutation σ has exactly one cycle of length one (i.e., exactly one fixed point). The only distinct cycle types with exactly one fixed point are $(1,4)$ and $(1,2,2)$. There are $\frac{5!}{4}=30$ permutations of the first type and $\frac{5!}{2^{3}}=15$ permutations of the second. Thus, the desired probability is $\frac{30+15}{5!}=\frac{3}{8}$.
3. Answer: $\frac{49}{729}$

Let the cube be oriented so that one ant starts at the origin and the other at $(1,1,1)$. Let x, y, z be moves away from the origin and $x^{\prime}, y^{\prime}, z^{\prime}$ be moves toward the origin in each the respective directions. Any move away from the origin has to at some point be followed by a move back to the origin, and if the ant moves in all three directions, then it can't get back to its original corner in 4 moves. The number of ways to choose 2 directions is $\binom{3}{2}=3$ and for each pair of directions there are $\frac{4!}{2!2!}=6$ ways to arrange four moves $a, a^{\prime}, b, b^{\prime}$ such that a precedes a^{\prime} and b precedes b^{\prime}. Hence there are $3 \cdot 6=18$ ways to move in two directions. The ant can also move in $a, a^{\prime}, a, a^{\prime}$ (in other words, make a move, return, repeat the move, return again) in three directions so this gives $18+3=21$ moves. There are $3^{4}=81$ possible moves, 21 of which return the ant for a probability of $\frac{21}{81}=\frac{7}{27}$. Since this must happen simultaneously to both ants, the probability is $\frac{7}{27} \cdot \frac{7}{27}=\frac{49}{729}$.
4. Answer: $\mathbf{1 0 0 6}^{\mathbf{2}}=1012036$

First note that the expression $(x+y+z)^{n}$ is equal to

$$
\sum \frac{n!}{a!b!c!} x^{a} y^{b} z^{c}
$$

where the sum is taken over all non-negative integers a, b, and c with $a+b+c=n$. The number of non-negative integer solutions to $a+b+c=n$ is $\binom{n+2}{2}$, so $T_{k}=\binom{k+2}{2}$ for $k \geq 0$. It is easy to see that $T_{k}=1+2+\cdots+(k+1)$, so T_{k} is the $(k+1)$ st triangular number. If $k=2 n-1$ is odd, then for all positive integers $i, T_{2 i}-T_{2 i-1}=2 i+1$ and therefore ${ }^{1}$

$$
\begin{aligned}
\sum_{j=0}^{k-1}(-1)^{j} T_{j} & =T_{0}+\sum_{j=1}^{n-1}\left(T_{2 j}-T_{2 j-1}\right) \\
& =1+\sum_{j=2}^{n}(2 j-1) \\
& =n^{2}
\end{aligned}
$$

[^0]Therefore, since T_{2010} is the 2011th triangular number and $2011=2(1006)-1$, we can conclude that the desired sum is 1006^{2}.

5. Answer: 44

The minimum can be obtained by

$$
1 \cdot 3 \cdot 4+2 \cdot 2 \cdot 3+3 \cdot 4 \cdot 1+4 \cdot 1 \cdot 2=12+12+12+8=44
$$

We claim that 44 is optimum. Denote $x_{i}=a_{i} b_{i} c_{i}$. Since $x_{1} x_{2} x_{3} x_{4}=(1 \cdot 2 \cdot 3 \cdot 4)^{3}=2^{9} \cdot 3^{3}, x_{i}$ should only consist of prime factors of 2 and 3 . So between 8 and $12 x_{i}$ can only be 9 .

Case 1. There are no 9 among x_{i} Then x_{i} are not in $(8,12)$. And $x_{1} x_{2} x_{3} x_{4}=12 \cdot 12 \cdot 12 \cdot 8$, so if x_{1} is minimum then $x_{1} \leq 8$. Then by AM-GM inequality $x_{2}+x_{3}+x_{4} \geq 3\left(x_{2} x_{3} x_{4}\right)^{1 / 3}$. If we let $\left(x_{2} x_{3} x_{4}\right)^{1 / 3}=12 y$ then $x_{1}=8 y^{-3}$, and for $y \geq 18 y^{-3}+36 y$ attains minimum at $y=1$. So $x_{1}+x_{2}+x_{3}+x_{4} \geq 8 y^{-3}+36 y \geq 44$.
Case 2. x_{1} is 9 . Then $x_{2} x_{3} x_{4}$ is divisible by 3 but not 9 . So only x_{2} is divisible by 3 and others are just powers of $2 . x_{2}$ can be $3,6,12,24$ or larger than 44 .
Case 2-1 $x_{2}=3: x_{3} x_{4}=2^{9}, x_{3}+x_{4} \geq 2^{5}+2^{4}=48>44$.
Case 2-2 $x_{2}=6: x_{3} x_{4}=2^{8}, x_{3}+x_{4} \geq 2^{4}+2^{4}=32, x_{1}+x_{2}+x_{3}+x_{4} \geq 9+6+32=47$.
Case 2-3 $x_{2}=12: x_{3} x_{4}=2^{7}, x_{3}+x_{4} \geq 2^{4}+2^{3}=24, x_{1}+x_{2}+x_{3}+x_{4} \geq 9+12+24=45$.
Case 2-4 $x_{2}=24: x_{3} x_{4}=2^{6}, x_{3}+x_{4} \geq 2^{3}+2^{3}=16, x_{1}+x_{2}+x_{3}+x_{4} \geq 9+24+16=49$.

6. Answer: $\frac{2011}{3}$

Let $n=2011$ and $p=\frac{1}{3}$. The answer can be computed as follows

$$
\begin{aligned}
\sum_{k=0}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k} & =\sum_{k=0}^{n} k \frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k} \\
& =\sum_{k=1}^{n} n \frac{(n-1)!}{(k-1)!((n-1)-(k-1))!} p^{k}(1-p)^{n-k} \\
& =n \sum_{k=1}^{n}\binom{n-1}{k-1} p^{k}(1-p)^{n-k} \\
& =n \sum_{i=0}^{n-1}\binom{n-1}{i} p p^{i}(1-p)^{n-1-i} \\
& =n p(p+1-p)^{n-1} \\
& =n p
\end{aligned}
$$

7. Answer: 72381

Observe that if the equation $a x+b y=n$ has m solutions, the equation $a x+b y=n+a b$ has $m+1$ solutions. Also note that $a x+b y=a x_{0}+b y_{0}$ for $0 \leq x_{0}<b, 0 \leq y_{0}<a$ has no other solution than $(x, y)=\left(x_{0}, y_{0}\right)$. (It is easy to prove both if you consider the fact that the general solution has form $\left(x^{\prime}+b k, y^{\prime}-a k\right)$.) So there are $a b$ such n and their sum is

$$
\sum_{\substack{0 \leq x<b \\ 0 \leq y<a}}(a x+b y+2010 a b)=2010 a^{2} b^{2}+\frac{a b(2 a b-a-b)}{2} .
$$

Plug in $a=2$ and $b=3$ to arrive at the answer.
8. Answer: $\frac{1+(1 / 3)^{50}}{2}$

The coin can turn up heads $0,2,4, \ldots$, or 50 times to satisfy the problem. Hence the probability is

$$
P=\binom{50}{0}\left(\frac{2}{3}\right)^{0}\left(\frac{1}{3}\right)^{50}+\binom{50}{2}\left(\frac{2}{3}\right)^{2}\left(\frac{1}{3}\right)^{48}+\cdots+\binom{50}{50}\left(\frac{2}{3}\right)^{50}\left(\frac{1}{3}\right)^{0}
$$

Note that this sum is the sum of the even-powered terms of the expansion $(1 / 3+2 / 3)^{50}$. To isolate these terms, we note that the odd-powered terms of $(1 / 3-2 / 3)^{50}$ are negative. So by adding $(1 / 3+$ $2 / 3)^{50}+(1 / 3-2 / 3)^{50}$, we get rid of the odd-powered terms and we are left with two times the sum of the even terms. Hence the probability is

$$
P=\frac{(1 / 3+2 / 3)^{50}+(1 / 3-2 / 3)^{50}}{2}=\frac{1+(1 / 3)^{50}}{2}
$$

9. Answer: 756

For any such function f, let $A=\{n \mid f(n)=n\}$ be the set of elements fixed by f and let $B=\{n \mid$ $f(n) \in A$ and $n \notin A\}$ be the set of elements that are sent to an element in A, but are not themselves in A. Finally, let $C=\{1,2,3,4,5\} \backslash(A \cup B)$ be everything else. Note that any possible value of $f(f(x))$ is in A so A is not empty. We will now proceed by considering all possible sizes of A.
(a) A has one element: Without loss of generality, let $f(1)=1$, so we will multiply our result by 5 at the end to account for the other possible values. Suppose that B has n elements so C has the remaining $4-n$ elements. Since $f(f(x))=1$ for each x so any element c in C must satisfy $f(c)=b$ for some b in B, because $f(c) \neq 1$ and the only other numbers for which $f(x)=1$ are the elements of B. This also implies that B is not empty. Conversely, any function satisfying $f(c)=b$ works, so the total number of functions in this case is $5 \sum_{n=1}^{4}\binom{4}{n} n^{4-n}$ because there are $\binom{4}{n}$ ways to choose the elements in B, and each of the $4-n$ elements in C can be sent to any element of B (there are n of them). This sum is equal to $5(4+6 \cdot 4+4 \cdot 3+1)=205$, so there are 205 functions in this case that A has one element.
(b) A has two elements: This is similar to the first case, except that each element in B can now correspond to one of two possible elements in A, so this adds a factor of 2^{n}. The sum now becomes $\binom{5}{2} \sum_{n=1}^{3}\binom{3}{n} 2^{n} n^{3-n}=10(3 \cdot 2+3 \cdot 4 \cdot 2+8)=380$, so there are 380 functions in this case.
(c) A has three elements: This is again similar to the prior cases, except there are 3 possible targes in A, adding a factor of 3^{n}. Then the sum is $\binom{5}{3} \sum_{n=1}^{2}\binom{2}{n} 3^{n} n^{2-n}=10(2 \cdot 3+9)=150$, so there are 150 functions in this case.
(d) A has four elements: The logic is the same as the prior cases and there are $5(4)=20$ functions in this case.
(e) A has five elements: The identity function is the only possible function in this case.

Adding together the five cases, we see that there are $205+380+150+20+1=756$ such functions.

10. Answer: 23409

Let a_{n} be the number of ways of filling the $2 \times 2 \times n$ box, and let b_{n} be the number of ways of filling it with one $1 \times 1 \times 2$ box fixed at the "bottom face" (2×2 face $)$. It is easy to see that $b_{n}=a_{n-1}+b_{n-1}$. It is then simple to verify that $a_{n}=2 b_{n}+2 b_{n-1}+a_{n-2}$. The base cases $a_{1}=2, b_{1}=1, a_{2}=9$, and $b_{2}=3$ are trivial to calculate. Using these values to calculate a_{8} recursively gives $a_{8}=23409$.

[^0]: ${ }^{1}$ For a quick visual proof of this fact, we refer the reader to http://www.jstor.org/stable/2690575.

