Note: Figures may not be drawn to scale.

1. Answer: $(-13,-16,-18)$

The normal to the plane is in the direction $<3,4,5>$ and so the line going through the point perpendicular to the plane is $(11-3 t, 16-4 t, 22-5 t)$ which intersects the plane at $t=4$ and hence the reflection of the point occurs at $t=8$, since the original point is at $t=0$.

2. Answer: 107736π or $(134)^{2} 6 \pi$

Translate by -2010 to get $(-402,0,0),(0,402,0),(0,0,402)$, then scale by $1 / 402:(-1,0,0),(0,1,0),(0,0,1)$. Notice that these three points define an equilateral triangle so the center of the circle defined by the 3 points is the circumcenter, which is also the incenter. The incenter of this triangle is $\left(\frac{-1}{3}, \frac{1}{3}, \frac{1}{3}\right)$, so the radius of the scaled down circle is

$$
\sqrt{\left(\frac{-1}{3}-0\right)^{2}+\left(\frac{1}{3}-1\right)^{2}+\left(\frac{1}{3}-0\right)^{2}}=\frac{\sqrt{6}}{3}
$$

The radius of the original circle is $402 \frac{\sqrt{6}}{3}=134 \sqrt{6}$. The area is then $\pi(134 \sqrt{6})^{2}=107736 \pi$.
3. Answer: $\frac{\sqrt{7}}{2}$

First, use Heron's Formula to find the area. The semiperimeter is $s=\frac{15}{2}$, so the area is $\sqrt{\frac{15}{2} * \frac{7}{2} * \frac{5}{2} * \frac{3}{2}}=$ $\frac{15 \sqrt{7}}{4}$. Now the area is equal to the inradius times the semiperimeter, so $r=\frac{A}{s}=\frac{\sqrt{7}}{2}$.
4. Answer: $\frac{5 \sqrt{2}}{3}$

The lengths of the sides of the large cube containing the cubeoctahedron are $\sqrt{2}$, so the volume of the containing cube is $2 \sqrt{2}$. The volumes of the removed pyramids are $\frac{1}{3} B H=\frac{1}{3}\left(\frac{1}{2} \frac{\sqrt{2}}{2} \frac{\sqrt{2}}{2}\right) \frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{24}$. Because there are 8 pyramids removed, the total volume removed is $8 \frac{\sqrt{2}}{24}=\frac{\sqrt{2}}{3}$. Thus, the total volume of the cubeoctahedron is $2 \sqrt{2}-\frac{\sqrt{2}}{3}=\frac{5 \sqrt{2}}{3}$.
5. Answer: $\sqrt{\mathbf{1 5}}$

By angle bisector theorem, $\frac{A B}{A C}=\frac{B D}{D C} \Rightarrow \frac{3}{9}=\frac{B D}{8-B D} \Rightarrow 24-3 B D=9 B D$. This implies $B D=2$ and $D C=6$. Now draw altitude $A E$ and let $x=D E$ and $h=A E$. Then by Pythagorean theorem, $(B D-$ $D E)^{2}+A E^{2}=A B^{2} \Rightarrow(2-x)^{2}+h^{2}=9$. Similarly, $A E^{2}+(D E+D C)^{2}=A C^{2} \Rightarrow h^{2}+(x+6)^{2}=81$. Expanding, $9=(2-x)^{2}+h^{2}=4-4 x+x^{2}+h^{2}$ and $81=h^{2}+x^{2}+12 x+36$. Subtracting the two equations, we get $16 x+32=72$, or $x=5 / 2$. Then $h^{2}=35 / 4$, and $A D=\sqrt{x^{2}+h^{2}}=\sqrt{25 / 4+35 / 4}=\sqrt{15}$.

6. Answer: $\frac{25 \sqrt{13}}{3}$

Let N be the opposite point of M in the circle. Then $M N=50$ and $N B=\sqrt{50^{2}-30^{2}}=40$ from that $\triangle M B N$ is right triangle. Let C be the midpoint of $A B$, then $\triangle M C B$ and $\triangle M B N$ are similar, so $B C=N B \cdot \frac{M B}{M N}=24, M C=M B \cdot \frac{M B}{M N}=18$. Let L be the intersection of $A C$ and the tangent. Since we have $A B$ and $O T$ parallel, $C L=O T=25$, so $B L=1$. Since $\triangle M C B \sim \triangle B L D$, we have $B D=M B \cdot \frac{B L}{M C}=\frac{5}{3}$, so $M D=\sqrt{M B^{2}+B D^{2}}=\frac{25 \sqrt{13}}{3}$.

7. Answer: 24

Let v, e, t, q be the number of vertices, edges, triangular faces, and quadrilateral faces respectively. Note that each vertex is shared by exactly one quadrilateral, and a quadrilateral provides four vertices. By simple counting we get $v=4 q$. Apply the same thing to triangular face, then we have $4 v=3 t$. Meanwhile from each vertex we have 5 edges coming out, so $5 v=2 e$. Thus we have

$$
q=1 / 4 v, t=4 / 3 v, e=5 / 2 v
$$

And from the Euler's formula $v-e+(t+q)=2$, we have $(1-5 / 2+1 / 4+4 / 3) v=1 / 12 v=2, v=24$.
8. Answer: $\sqrt{R^{2} \csc ^{2} \theta-x^{2}}-R \cot \theta$

Consider the following diagram, where the sphere has radius r :

Note that $d=\frac{R}{\tan \theta}, r=\frac{R}{\sin \theta}$, and $h=\sqrt{r^{2}-x^{2}}-d$. Plug in r and d gives the above answer.
9. Answer: $8 \sqrt{3}$

The center of the sphere is located at the centroid of the tetrahedron, which is located $\frac{1}{4}$ of the way up the altitude from a face to the opposite vertex. In other words, the tetrahedron has height 4 . Let its edge length be s. Then the altitude of a face is $s \frac{\sqrt{3}}{2}$, and the distance from the centroid of a face to a vertex is $\frac{2}{3}$ of that, which is $\frac{\sqrt{3}}{3}$. This length and the height of the tetrahedron form a right triangle, with an edge as the hypotenuse. That is, $\frac{1}{3} s^{2}+16=s^{2}$. Thus $s^{2}=24$, and so the area of a face is $6 \sqrt{3}$. The volume is $\frac{1}{3} * 6 \sqrt{3} * 4=8 \sqrt{3}$.

10. Answer: 6029.

If we consider a single 1×1 square, and find two regions within it on which the center of the coin of radius $\frac{1}{4}$ can land - the center $\left(\frac{1}{2} \times \frac{1}{2}\right)$, of area $\frac{1}{4}$, and the outside edge, where an overlap will occur, of area $\frac{3}{4}$.
The total area that the center of the coin can land on is thus

$$
\left(2010-\frac{1}{2}\right)\left(2010-\frac{1}{2}\right)=\frac{4019^{2}}{4}
$$

Thus, the probability is $\frac{2010^{2}}{4019^{2}}$, so $a+b=6029$.

