1. Answer: $\frac{-1}{x^{2}+1}$

Notice that as $t \rightarrow 0$, both the numerator and the denominator approach 0 . Thus, applying L'Hopital's rule on t (keeping x constant):

$$
\left.\frac{d}{d t} \operatorname{Tan}^{-1}\left(\frac{1}{x+t}\right)\right|_{t=0}=-\frac{1}{1+x^{2}}
$$

2. Answer: 1

Let $f(x)=e^{x}-x-\frac{x^{3}}{3}$. Then $f^{\prime}(x)=e^{x}-1-x^{2}$. When $x<0, e^{x}<1$ and $1+x^{2}>1$, so $f^{\prime}(x)=$ $e^{x}-\left(1+x^{2}\right)<0$. Thus, f is decreasing on $(-\infty, 0)$. When $x=0, f^{\prime}(x)=f^{\prime}(0)=e^{0}-1-0^{2}=1-1=0$. Finally, for $x>0, f^{\prime}(x)=e^{x}-1-x^{2}>0$ by a Maclaurin series expansion, so f is increasing on $(0, \infty)$. Thus, f must attain its minimum when $x=0$, at which point f has the value $e^{0}-0-\frac{0^{3}}{3}=1$.

3. Answer: $\sqrt{2}$

Consider:

$$
\begin{gathered}
\left.\frac{\mathrm{d}}{\mathrm{~d} t} \sin ^{-1}(t-\sqrt{1 / 2})\right|_{t=0}=\left.\frac{\mathrm{d}}{\mathrm{~d} t} \int_{-\infty}^{\infty} e^{t x} f(x) \mathrm{d} x\right|_{t=0}=\left.\int_{-\infty}^{\infty} x e^{t x} f(x) \mathrm{d} x\right|_{t=0}=\int_{-\infty}^{\infty} x f(x) \mathrm{d} x \\
\left.\frac{\mathrm{~d}}{\mathrm{~d} t} \sin ^{-1}(t-\sqrt{1 / 2})\right|_{t=0}=\left.\frac{1}{\sqrt{1-(\sqrt{1 / 2}-t)^{2}}}\right|_{t=0}=\frac{1}{\sqrt{1-(1 / 2)}}=\sqrt{2}
\end{gathered}
$$

4. Answer: $x=-\frac{2}{3}$ and $x=0$

Notice that $f(x) \rightarrow 0$ as $x \rightarrow \pm \infty$. Since $9 x^{2}+6 x+2$ has no real roots, the maximum value of $f(x)$ is attained at the maximum of the absolute values of the critical points of $\frac{3 x+1}{9 x^{2}+6 x+2}$.
The extrema of $\frac{3 x+1}{9 x^{2}+6 x+2}$ occur at $x=-\frac{2}{3}$ and $x=0$. It is easily checked that maxima of $f(x)$ occur at both of these points.

5. Answer: $\frac{128 \sqrt{3}}{27}$

Let the circular island be a circle of radius 2 centered at the origin. Without loss of generality, let the length of the rectangular base be from $-x$ to x and the width from $-y$ to y. Notice that by the equation of a circle, $x^{2}=4-y^{2}$. Then

$$
\begin{gathered}
V=\frac{1}{3}(2 x)^{2}(2 y)=\frac{8}{3} x^{2} y=\frac{8}{3}\left(4-y^{2}\right) y=\frac{8}{3}\left(4 y-y^{3}\right) \\
\frac{d V}{d y}=\frac{8}{3}\left(4-3 y^{2}\right)=0 \rightarrow y=\sqrt{\frac{4}{3}} \\
V=\frac{8}{3}\left(\frac{8}{3}\right) \sqrt{\frac{4}{3}}=\frac{128}{9 \sqrt{3}}=\frac{128 \sqrt{3}}{27} .
\end{gathered}
$$

6. Answer: 13

This is the evaluation of the mean of a Poisson distribution: for any λ,

$$
\sum_{k=0}^{\infty} k e^{-\lambda} \frac{\lambda^{k}}{k!}=\sum_{k=1}^{\infty} k e^{-\lambda} \frac{\lambda^{k}}{k!}=\lambda \sum_{k=1}^{\infty} e^{-\lambda} \frac{\lambda^{k-1}}{(k-1)!}=\lambda e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m}}{m!}=e^{-\lambda} e^{\lambda}=\lambda .
$$

7. Answer: $\frac{-2 \cos \left(t^{2}\right)}{t}$

By the Leibniz integral rule, the above integral becomes

$$
\begin{aligned}
\int_{-\ln 1 / t}^{\ln 1 / t}-e^{x} \sin \left(t e^{x}\right) d x+\cos \left(t e^{\ln (1 / t)}\right)(-1 / t)-\cos \left(t e^{-\ln (1 / t)}\right)(1 / t) & =\left.\frac{\cos \left(t e^{x}\right)}{t}\right|_{-\ln 1 / t} ^{\ln 1 / t}-\frac{\cos (1)+\cos \left(t^{2}\right)}{t} \\
& =\frac{-2 \cos \left(t^{2}\right)}{t}
\end{aligned}
$$

8. Answer: $\ln 3$

The partial sums of this sum are equal to

$$
\begin{aligned}
& \left(\frac{1}{1}+\frac{1}{2}+\cdots+\frac{1}{3 n}\right)-3\left(\frac{1}{3 \cdot 1}+\frac{1}{3 \cdot 2}+\cdots+\frac{1}{3 \cdot n}\right) \\
& =\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{3 n}=\frac{1}{n}\left(\frac{1}{1+\frac{1}{n}}+\frac{1}{1+\frac{2}{n}}+\cdots+\frac{1}{1+\frac{2 n}{n}}\right)
\end{aligned}
$$

This is a Riemann sum, so as $n \rightarrow \infty$ the partial sums converge to

$$
\int_{0}^{2} \frac{1}{1+x} d x=\ln 3
$$

9. Answer: 3

Since the parabola $f(x)=x(4-x)-k$ is symmetric about $x=2$, the problem is equivalent to minimizing $\int_{0}^{2}|f(x)| d x$. The vertex of the parabola equals $(2, f(2))=(2,4-k)$. When $k=4, f(x)$ lies completely below the x -axis in the interval $[0,2]$ and hence $k>4$ would only translate $\mathrm{f}(\mathrm{x})$ down and increase the integral. Similarly, at $k=0, f(x)$ lies completely above the x -axis so $k<0$ would only increase the integral. Thus, we can split the integral into two regions

$$
\begin{gathered}
a=\int_{0}^{2-\sqrt{4-k}}\left(x^{2}-4 * x+k\right) d x=-\frac{16}{3}+\frac{8 \sqrt{4-k}}{3}+2 k-\frac{2}{3} \sqrt{4-k} k \\
b=\int_{2-\sqrt{4-k}}^{2}\left(-x^{2}+4 * x-k\right) d x=\frac{2}{3}(4-k)^{3 / 2}
\end{gathered}
$$

We want to solve for the critical point of

$$
\begin{gathered}
a+b \\
\frac{d(a+b)}{d k}=2-\frac{4}{3 \sqrt{4-k}}-\frac{5 \sqrt{4-k}}{3}+\frac{k}{3 \sqrt{4-k}}=\frac{2(-4+\sqrt{4-k}+k)}{\sqrt{4-k}}
\end{gathered}
$$

The numerator equals 0 when $k=3$. It is clear that a global minimum results since this is a global minimum on $(-\infty, 4]$ and $F(k)$ is clearly increasing for $k>4$.
10. Answer: $y=-4 x^{2}+5 x-7$

Such a parabola intersects $f(x)$ precisely where $f^{\prime}(x)=0$. Hence, the value of the intersection points do not change when we replace $f(x)$ by $f(x)+g(x) f^{\prime}(x)$ for any $g(x)$. Therefore, since $f^{\prime}(x)=6 x^{5}-12 x+6$, we must have that $f(x)-1 / 6 x f^{\prime}(x)=-4 x^{2}+5 x-7$ passes through the three critical points. Since three points determines a parabola uniquely, this must be the unique parabola passing through the three critical points.

