- 1. Compute $\sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \sqrt{1 + \dots}}}}}$
- 2. Write 2010.220112563 modulo 2010.220 as a fraction. You do not have to reduce the fraction.
- 3. Find $\sin 18^{\circ}$.
- 4. If $x^2 + 1/x^2 = 7$, find all possible values of $x^5 + 1/x^5$.
- 5. Given two regions described by the inequalities $(x 1)^2 + y^2 \le 4$ and $(x + 1)^2 + y^2 \le 4$, respectively, find the area of the intersection of the two regions.
- 6. Consider the sequence $1, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, \dots$ Find n such that the first n terms sum up to 2010.
- 7. Find all the integers x in [20, 50] such that $6x + 5 \equiv -19 \mod 10$, that is, 10 divides (6x + 15) + 19.
- 8. Find all pairs of positive integers (x, y) such that $2^x + 1 = 3^y$, and y is not divisible by 4.
- 9. Suppose xy 5x + 2y = 30, where x and y are positive integers. Find the sum of all possible values of x.
- 10. Find the sum of all solutions of the equation

$$\frac{1}{x^2 - 1} + \frac{2}{x^2 - 2} + \frac{3}{x^2 - 3} + \frac{4}{x^2 - 4} = 2010x - 4.$$