1. Compute $\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\ldots}}}}}}$
2. Write $2010.220 \overline{112563}$ modulo 2010.220 as a fraction. You do not have to reduce the fraction.
3. Find $\sin 18^{\circ}$.
4. If $x^{2}+1 / x^{2}=7$, find all possible values of $x^{5}+1 / x^{5}$.
5. Given two regions described by the inequalities $(x-1)^{2}+y^{2} \leq 4$ and $(x+1)^{2}+y^{2} \leq 4$, respectively, find the area of the intersection of the two regions.
6. Consider the sequence $1,2,1,2,2,1,2,2,2,1,2,2,2,2,1, \ldots$ Find n such that the first n terms sum up to 2010 .
7. Find all the integers x in $[20,50]$ such that $6 x+5 \equiv-19 \bmod 10$, that is, 10 divides $(6 x+15)+19$.
8. Find all pairs of positive integers (x, y) such that $2^{x}+1=3^{y}$, and y is not divisible by 4 .
9. Suppose $x y-5 x+2 y=30$, where x and y are positive integers. Find the sum of all possible values of x.
10. Find the sum of all solutions of the equation

$$
\frac{1}{x^{2}-1}+\frac{2}{x^{2}-2}+\frac{3}{x^{2}-3}+\frac{4}{x^{2}-4}=2010 x-4
$$

