1. Answer: 2520

$$
\frac{8!}{(2!)^{4}}=\frac{7!}{2}=2520
$$

2. Answer: $3(a-b)(b-c)(c-a)$

The expression is zero when any two of a, b, and c are equal. So it must have $(a-b)(b-c)(c-a)$ as a factor. But the original polynomial is degree 3, and so is this one, so the remaining factor must be a constant. The original polynomial contains a term $3 a b^{2}$, but $(a-b)(b-c)(c-a)$ only contains a term $a b^{2}$, so the constant must be 3 .
3. Answer: 13

Consider the equation modulo 5 . All fourth powers are either 0 or $1 \bmod 5$. So one of x and y must be divisible by 5 ; suppose it's x. Then we must in fact have $x=5$, since $x=10$ is too large. This gives $y=8$, and this is the only possible solution. So the answer is 13 .

4. Answer: 41

A recursion relationship describing this problem is $a_{1}=1, a_{2}=2, a_{2 n}=a_{n}+a_{n-1}, a_{2 n+1}=a_{n}$
where a_{n} is the number of valid sums for n. Thus,
$a_{657}=a_{328}=a_{164}+a_{163}=a_{82}+2 a_{81}=a_{41}+3 a_{40}=3 a_{19}+4 a_{20}$
$=4 a_{10}+7 a_{9}=4 a_{5}+11 a_{4}=4 a_{2}+11 a_{4}=4 \cdot 2+11 \cdot 3=41$.
5. Answer: 120

Define $\Gamma(n)=\int_{0}^{\infty} t^{n-1} e^{-t} d t$. Using integration by parts,

$$
\begin{aligned}
\Gamma(n+1) & =\int_{0}^{\infty} t^{n} e^{-t} d t \\
& =-\left.t^{n} e^{-t}\right|_{0} ^{\infty}+\int_{0}^{\infty} n t^{n-1} e^{-t} d t \\
& =0+n \int_{0}^{\infty} t^{n-1} e^{-t} d t \\
& =n \Gamma(n)
\end{aligned}
$$

Next we evaluate $\Gamma(1)=\int_{0}^{\infty} e^{-t} d t=-\left.e^{-t}\right|_{0} ^{\infty}=0--1=1$. Thus, $\Gamma(n+1)=n \Gamma(n)=\ldots=n!\Gamma(1)=$ $n!$. So for the problem, $\Gamma(6)=5!=120$.
6. Answer: $\frac{2}{\pi}$

$$
\text { Area of Rhombus } \begin{aligned}
A B C D & =4 * \frac{1}{2} * \cos \frac{\theta}{2} \sin \frac{\theta}{2} \\
& =2 * \cos \frac{\theta}{2} \sin \frac{\theta}{2}=\sin \theta
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{E}[\text { Rhombus } A B C D] & =\frac{1}{\frac{\pi}{2}-0} \int_{0}^{\frac{\pi}{2}} \sin \theta d x \\
& =\frac{2}{\pi} * 1 \\
& =\frac{2}{\pi}
\end{aligned}
$$

7. Answer: $\frac{3 \sqrt{3}}{4}$

Let the angle between the longer base and the leg be θ.
The Area of the Trapezoid $\Delta(\theta)=\sin \theta+\sin \theta * \cos \theta=\sin \theta+\frac{1}{2} \sin 2 \theta$
The area reaches extrema when its derivative is zero:
$\Delta^{\prime}=\cos \theta+\cos 2 \theta=0$
We use the formula $\cos 2 \theta=2 * \cos ^{2} \theta-1$
$2 * \cos ^{2} \theta+\cos \theta-1=0$
$\cos \theta=\frac{-1 \pm \sqrt{9}}{4}=\frac{1}{2}$ or -1 (omitted)
$\sin \theta=\frac{\sqrt{3}}{2}$
$\Delta_{M a x}=\frac{3 \sqrt{3}}{4}$
8. Answer: $\frac{-n^{2}+1}{12 n^{2}}$

$$
\begin{aligned}
\sum_{k=1}^{n} \frac{k^{2}(k-n)}{n^{4}} & =\sum_{k=1}^{n} \frac{k^{3}-k^{2} n}{n^{4}} \\
& =\sum_{k=1}^{n} \frac{k^{3}}{n^{4}}-\sum_{k=1}^{n} \frac{k^{2}}{n^{3}} \\
& =\frac{1}{n^{4}} \sum_{k=1}^{n} k^{3}-\frac{1}{n^{3}} \sum_{k=1}^{n} k^{2} \\
& =\left(\frac{1}{n^{4}}\right)\left(\frac{n(n+1)}{2}\right)^{2}-\left(\frac{1}{n^{3}}\right)\left(\frac{n(n+1)(2 n+1)}{6}\right) \\
& =\frac{n^{4}+2 n^{3}+n^{2}}{4 n^{4}}-\frac{2 n^{3}+3 n^{2}+n}{6 n^{3}} \\
& =\frac{-n^{4}+n^{2}}{12 n^{4}} \\
& =\frac{-n^{2}+1}{12 n^{2}}
\end{aligned}
$$

9. Answer: $2 \sqrt{\mathbf{1 7}}$

Find the point on the parabola closest to the point $(6,12)$. Call it (x, y) This point is where the normal line at x crosses the parabola. We find the derivative by:

$$
\begin{aligned}
x & =y^{2} \\
d x & =y d y \\
\frac{d y}{d x} & =\frac{1}{y}
\end{aligned}
$$

The normal line will have slope of $-y$. It will contain $(6,12)$. Its equation is:

$$
\begin{aligned}
y-12 & =-y(x-6) \\
y & =-x y+6 y+12 \\
y & =-\frac{y^{3}}{2}+6 y+12 \\
2 y & =-y^{3}+12 y+24 \\
0 & =y^{3}-10 y-24
\end{aligned}
$$

The roots are 4 and two other imaginary answers, so 4 is the only one that works.

$$
\begin{array}{r}
y-12=-y(x-6) \\
-8=-4(x-6) \\
x=8
\end{array}
$$

Find the distance between $(8,4)$ and $(6,12)$. The answer is $2 \sqrt{17}$.

10. Answer: 2

More generally, define a function G by
$G(m)=\sum_{n=m}^{\infty} \frac{\binom{n}{m}}{2^{n}}$.
Thus we wish to evaluate $G(2009)$. Observe that for all $m \geq 1$:

$$
\begin{aligned}
G(m) & =\sum_{n=m}^{\infty} \frac{\binom{n}{m}}{2^{n}} \\
& =\sum_{n=m}^{\infty} \frac{\binom{n-1}{m-1}+\binom{n-1}{m}}{2^{n}} \\
& =\frac{1}{2} \sum_{n=m-1}^{\infty} \frac{\binom{n}{m-1}}{2^{n}}+\frac{1}{2} \sum_{n=m-1}^{\infty} \frac{\binom{n}{m}}{2^{n}} \\
& =\frac{1}{2}(G(m-1)+G(m))
\end{aligned}
$$

And thus $G(m)=G(m-1)$. Thus it suffices to evaluate $G(0)$. However, this is simply a geometric series:

$$
\begin{aligned}
G(0) & =\sum_{n=0}^{\infty} \frac{1}{2^{n}} \\
& =2
\end{aligned}
$$

NOTE: By noticing that $\binom{n}{2009}$ is $\frac{1}{2009!} n^{2009}$ asymptotically, one can see this summation as a discrete analogue of the Euler Γ function, which is defined by $\Gamma(x)=\int_{0}^{\infty} \frac{t^{x-1}}{e^{t}} d t$. The solution above is similar to the proof that $\Gamma(n+1)=n \Gamma(n)$.
11. Answer: 1266

$$
\begin{aligned}
\left(1+z_{1}^{2} z_{2}\right)\left(1+z_{1} z_{2}^{2}\right) & =1+z_{1}^{2} z_{2}+z_{1} z_{2}^{2}+z_{1}^{3} z_{2}^{3} \\
& =1+z_{1} z_{2}\left(z_{1}+z_{2}\right)+\left(z_{1} z_{2}\right)^{3}
\end{aligned}
$$

Since $z_{1}+z_{2}=-6$ and $z_{1} z_{2}=11$,

$$
\begin{aligned}
\left(1+z_{1}^{2} z_{2}\right)\left(1+z_{1} z_{2}^{2}\right) & =1+11(-6)+11^{3} \\
& =1266
\end{aligned}
$$

12. Answer: 13689
$2009=7^{2} \times 41$
We know for a number $n=a_{1}^{\alpha_{1}} \times a_{2}^{\alpha_{2}} \times \ldots \times a_{n}^{\alpha_{n}}$, it has $\left(\alpha_{1}+1\right) \times\left(\alpha_{2}+1\right) \times \ldots\left(\alpha_{n}+1\right)$ factors.
Hence, for number N , we have the following options:
$\alpha_{1}=7-1=6, \alpha_{2}=7 \times 41-1=289-1=288$
$\alpha_{1}=7-1=6, \alpha_{2}=7-1=6, \alpha_{3}=41-1-40$
By the same fact mentioned above, N^{2} has: $\left(2 * \alpha_{1}+1\right) \times\left(2 * \alpha_{2}+1\right) \times \ldots\left(2 * \alpha_{n}+1\right)$ factors.
Calculating this number for both, we get the 2 nd option gets us a bigger number: $13 \times 13 \times 81=$ 13689
13. Answer: 3

$$
\begin{aligned}
17^{289} & \equiv(14+3)^{289} \equiv\binom{289}{1} 14^{288} 3+\ldots+\binom{289}{n} 13^{289-n} 3^{n}+\ldots \\
3^{289} & \equiv 3^{289}(\quad \bmod 7)
\end{aligned}
$$

Note that $3^{3} \equiv 27 \equiv-1(\bmod 7)$. Then $3^{289} \equiv 3^{3 \dot{9} 6} \dot{3}^{1} \equiv(-1)^{96} \dot{3}^{1} \equiv 3 \bmod 7$. Thus, the remainder is 3 .

14. Answer: 17

equation modulo 23 , we get $-6(a-b) \equiv-10(\bmod 23)$. Since -4 is an inverse of -6 modulo 23 , then we multiply to get $(a-b) \equiv 17(\bmod 23)$. Therefore, the smallest possible positive value for $(\mathrm{a}-\mathrm{b})$ is 17. This can be satisfied by $a=5, b=-12$.
15. Answer: 66
$\left\lfloor\frac{2008}{31}\right\rfloor+\left\lfloor\frac{2008}{31^{2}}\right\rfloor+\left\lfloor\frac{2008}{31^{3}}\right\rfloor+\left\lfloor\frac{2008}{31^{4}}\right\rfloor+\cdots=64+2+0+0+\cdots=66$.

