## 1. Answer: 31

The angle sum of a polygon with $n$ sides is $180(n-2)$. The total sum is then $180\left(n_{1}-2\right)+180\left(n_{2}-\right.$ $2)+\cdots+180\left(n_{7}-2\right)=180\left(n_{1}+n_{2}+\cdots n_{7}\right)-7 \cdot 2 \cdot 180=180 \cdot 17$. Dividing through by 180 gives $n_{1}+n_{2}+\cdots+n_{7}-14=17$, so the total number of sides $14+17=31$.
2. Answer: $\frac{\sqrt{3}}{5}$

Rank the shaded triangles by their area, largest to smallest. The largest shaded triangle has an area of $\frac{\sqrt{3}}{16}$. There are three of them, call them the first set. The $i^{\text {th }}$ set of triangles has base $\frac{1}{4}$ that of the $(i-1)^{t h}$ set, so the area of the $i^{t h}$ set is $\frac{1}{16}$ that of the of the $(i-1)^{t h}$ set. So the total shaded area becomes an infinite geometric series:

$$
\frac{\sqrt{3}}{16} \cdot 3 \cdot\left(\frac{1}{1-\frac{1}{16}}\right)=\frac{\sqrt{3}}{5} .
$$

## 3. Answer: $2 \cos (36)$

Consider the triangle formed by the diagonal and two sides of the pentagon. The interior angle of the pentagon is $108^{\circ}$, so the other two angles are both $36^{\circ}$. By the law of sines, $\frac{\sin (36)}{a}=\frac{\sin (108)}{d}$. Thus, $\frac{d}{a}=\frac{\sin (108)}{\sin (36)}=\frac{\sin (72)}{\sin (36)}=\frac{\sin ((2)(36))}{\sin (36)}=2 \cos (36)$.

## 4. Answer: 20



By the Pythogorean theorem, $E D=\sqrt{5}$. Since $A B C D$ is a rhombus, $A E \perp E D$. So triangle $\triangle F D E \sim \triangle E D A$. Thus we obtain the following ratio:

$$
\begin{aligned}
\frac{D F}{E D} & =\frac{E F}{A E} \\
\frac{1}{\sqrt{5}} & =\frac{2}{A E}
\end{aligned}
$$

So $A E=2 \sqrt{5}$. Thus, the area is $\frac{1}{2}(2 \times A E)(2 \times D E)=\frac{1}{2}(4 \sqrt{5})(2 \sqrt{5})=20$.
5. Answer: $265-132 \sqrt{3}$

Denote $r_{1}$ the inner radius and $r_{2}$ the outer radius. Then the inner lane has distance $2 \pi r_{1}$ and outer lane $2 \pi r_{2}$. But since Sammy will only be racing for $2 \pi r_{1}$, there is $2 \pi\left(r_{2}-r_{1}\right)$ distance along the outer lane which he will skip. Let $W$ denote Willy's starting position, $S$ Sammy's starting position, and $O$ the origin of the circular race track. Let $\theta$ be the angle between $W O$ and $S O$. Then $2 \pi\left(r_{2}-r_{1}\right)=\frac{\theta}{360}\left(2 \pi r_{2}\right)$. Plugging in $r_{1}=11$ and $r_{2}=12$ and solving for $\theta$, we get $\theta=30^{\circ}$. Using coordinate geometry, $W=(11,0)$ and $S=(12 \cos 30,12 \sin 30)=(6 \sqrt{3}, 6)$. Thus, $(W S)^{2}=(11-6 \sqrt{3})^{2}+36=265-132 \sqrt{3}$.
6. Answer: $\frac{117 \sqrt{3}}{2}$

$A D$ bisects $B C$ since $\triangle A B C$ is equilateral, so $C D=12 . \triangle A C D$ is a 30-60-90 degree triangle, so $A D=12 \sqrt{3}$. Likewise, $\triangle D C E$ is also $30-60-90$, so $E C=6$ and $E D=6 \sqrt{3}$. So $A E=A C-E C=$ $24-6=18$. $\triangle E A F$ is also $30-60-90$, so $A F=9$ and $E F=9 \sqrt{3}$. Since $\angle A E G=\angle A E F=$ $30^{\circ}, \angle G E D=60^{\circ}$. Likewise, $\angle C D E=30^{\circ}$ implies $E D G=60^{\circ}$. So $\angle D G E$ must also be $60^{\circ}$ and $\triangle G E D$ is equilateral, so $E G=G D=E D=6 \sqrt{3}$. $F G=E F-E G=9 \sqrt{3}-6 \sqrt{3}=3 \sqrt{3}$. $F B=A B-A F=24-9=15$ and $B D=B C-C D=12$. So area of quadrilateral $B F G D$ is area $\triangle B F G+$ area $\triangle B D G=\frac{1}{2}(3 \sqrt{3})(15)+\frac{1}{2}(6 \sqrt{3})(12)=\frac{117 \sqrt{3}}{2}$.
7. Answer: $\sqrt{3}-\frac{3}{2}$

Let $r$ be the radius of the three largest circles and $s$ be the radius of the smallest circles. Consider the equilateral triangle $\triangle A B C$ formed by the centers of the three largest circles. This triangle has side length $2 r$ and altitude $r \sqrt{3}$. Let $O$ be the center of the smallest circle, and consider altitude $A M$, passing through $O$. $A O=r+s=\frac{2}{3} A M$, so the altitude is also $\frac{3}{2}(r+s)$. Equating these and solving for the ratio gives $\frac{s}{r}=\frac{2 \sqrt{3}}{3}-1$.
8. Answer: $\frac{3}{4}$

Suppose the first two points are separated by an angle $\alpha$. Note that $\alpha$ is therefore randomly chosen between 0 and $\pi$. If we are to place the third point so that the three lie on the same semicircle, we have an arc of measure $2 \pi-\alpha$ to choose from. The probability of this placement is therefore $1-\frac{\alpha}{2 \pi}$. This varies evenly from 1 at $\alpha=0$ to $\frac{1}{2}$ at $\alpha=\pi$. The average is therefore $\frac{3}{4}$.
9. Answer: $\frac{10 \pi-12 \sqrt{3}}{9}$, or $\frac{10 \pi}{9}-\frac{4 \sqrt{3}}{3}$
$\angle X A Y=120^{\circ}$, so the radius of circle $A$ is $\frac{2 \sqrt{3}}{3} . \angle X B Y$ in $60^{\circ}$, so the radius of circle $B$ is 2 . The area of the sector $A X Y$ is $\frac{1}{3}$ the area of circle $A$, so the area formed between segment $X Y$ and arc $X Y$ in circle $A$ is the area of sector $A X Y$ inus the area of $\triangle A X Y$.

$$
\frac{1}{3} \pi\left(\frac{2 \sqrt{3}}{3}\right)^{2}-\frac{1}{2} \cdot 2 \cdot \frac{\sqrt{3}}{3}=\frac{4 \pi-3 \sqrt{3}}{9}
$$

Similarly, sector $B X Y$ is $\frac{1}{6}$ of the area of circle $B$, so the area formed between segment $X Y$ and arc $X Y$ in circle $B$ is

$$
\frac{1}{6} \pi(2)^{2}-(2)^{2} \frac{\sqrt{3}}{4}=\frac{2 \pi-3 \sqrt{3}}{3}
$$

The total area shared by the two circles is then:

$$
\frac{4 \pi-3 \sqrt{3}}{9}+\frac{2 \pi-3 \sqrt{3}}{3}=\frac{10 \pi-12 \sqrt{3}}{9}
$$

10. Answer: $5^{\circ}$


Note that $\angle A C B=90^{\circ}$, so $A B$ must be the diameter of $W$. Then $C O$ is the median from $C$ to $A B$, where $O$ is the origin of $W$, and $C D$ passes through $O$. Then $C O=B O$ and $\angle B C D=\angle C B A=25^{\circ}$. We calculate $\angle C O B=180^{\circ}-2 \times 25^{\circ}=130^{\circ}$. Then $\angle A O D=130^{\circ}$. Consider the quadrilateral $P D O A . \angle P=360^{\circ}-\angle B A D-\angle C D P-\angle A O D=360^{\circ}-90^{\circ}-90^{\circ}-130^{\circ}=50^{\circ}$.

