1. Answer: $\sin 1$

By Taylor Expansion, $\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots$ Let $\mathrm{x}=1$, and the desired value equals $\sin 1$.
2. Answer: $\frac{\pi}{2}$
$d=\int_{0}^{\infty} \frac{1}{1+t^{2}} d t=\left.\tan ^{-1}(t)\right|_{0} ^{\infty}=\lim _{t \rightarrow \infty} \tan ^{-1}(t)-\tan ^{-1}(0)=\frac{\pi}{2}$.
3. Answer: $\frac{10}{9}$

By l'Hôpital's rule,

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{10 x^{2}}{\sin ^{2}(3 x)} & =\lim _{x \rightarrow 0} \frac{20 x}{6 \sin (3 x) \cos (3 x)} \\
& =\lim _{x \rightarrow 0} \frac{20 x}{3 \sin (6 x)} \\
& =\lim _{x \rightarrow 0} \frac{20}{18 \cos (6 x)} \\
& =\frac{10}{9}
\end{aligned}
$$

4. Answer: $\frac{\pi-2 \ln (2)}{4}$ or equivalent expression

We integrate by parts:

$$
\begin{aligned}
\int_{0}^{1} 1 \cdot \tan ^{-1}(x) d x & =\left[x \tan ^{-1}(x)\right]_{0}^{1}-\int_{0}^{1} \frac{x}{x^{2}+1} d x \\
& =\frac{\pi}{4}-0-\left[\frac{1}{2} \ln \left(x^{2}+1\right)\right]_{0}^{1} \\
& =\frac{\pi}{4}-\frac{\ln (2)}{2}
\end{aligned}
$$

5. Answer: $-\frac{\cos (8)}{32}+\frac{33}{32}$

$$
v(t)=\int a(t) d t=\int \cos ^{2}(2 t) d t=\int \frac{1+\cos (4 t)}{2} d t=\frac{\sin (4 t)}{8}+\frac{t}{2}+c_{1},
$$

where c_{1} is a constant. Plug in $t=0$ to find $v(0)=c_{1}=-2$. So $v(t)=\frac{\sin (4 t)}{8}+\frac{t}{2}-2$.

$$
x(t)=\int v(t) d t=\int \frac{\sin (4 t)}{8}+\frac{t}{2}-2 d t=-\frac{\cos (4 t)}{32}+\frac{t^{2}}{4}-2 t+c_{2} .
$$

Plug in $t=0$ to get $x(0)=-\frac{1}{16}+c_{2}=1$, so $c_{2}=\frac{33}{32}$. Thus,

$$
x(2)=-\frac{\cos (8)}{16}+\frac{33}{32} .
$$

6. Answer: $\frac{a^{2}}{1+a} e^{-a x}$

Since $\frac{d^{n}}{d x^{n}}\left(e^{-a x}\right)=(-a)^{n} e^{-a x}$,

$$
\sum_{n=2}^{\infty} \frac{d^{n}}{d x^{n}}\left(e^{-a x}\right)=e^{-a x} \sum_{n=2}^{\infty}(-a)^{n}
$$

This forms a geometric series with common ratio $-a$ and first element a^{2}, which converges since $|a|<1$.
Thus the answer is $\frac{a^{2}}{1+a} e^{-a x}$.
7. Answer: $\frac{1-\cos (4)}{16}$

Define a partition on $[0,1]$ with n elements by setting $x_{i}=\frac{i}{n}$ for $0 \leq i \leq n$. Then $x_{i}-x_{i-1}=\frac{1}{n}$ for all i. If we let $f(y)=(1-y) \cos (4 y)$ and put $y_{k}=\frac{k}{n}$ for $1 \leq k \leq n$, then we have

$$
\sum_{k=1}^{n} \frac{n-k}{n^{2}} \cos \left(\frac{4 k}{n}\right)=\sum_{k=1}^{n} f\left(y_{k}\right)\left(x_{i}-x_{i-1}\right)
$$

Thus, we may conclude that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(y_{k}\right)\left(x_{i}-x_{i-1}\right) & =\int_{0}^{1} f(y) d y \\
& =\int_{0}^{1}(1-y) \cos (4 y) \\
& =\left[\left(\frac{1-y}{4}\right) \sin (4 y)-\frac{\cos (4 y)}{16}\right]_{0}^{1} \\
& =\frac{-\cos (4)}{16}+\frac{1}{16}
\end{aligned}
$$

8. Answer: $\frac{14 e^{2}-12}{e^{2}-1}$, or $\frac{14-12 e^{-2}}{1-e^{-2}}$

To evaluate the floor function, split the integral into unit intervals:

$$
\begin{aligned}
\int_{0}^{\infty} 4\lfloor x+7\rfloor e^{-2 x} d x & =\sum_{k=0}^{\infty} \int_{k}^{k+1} 4(k+7) e^{-2 x} d x \\
& =\left(14 e^{-0}-14 e^{-2}\right)+\left(16 e^{-2}-16 e^{-4}\right)+\left(18 e^{-4}-18 e^{-6}\right)+\ldots \\
& =12+2\left(e^{-0}+e^{-2}+e^{-4}+\ldots\right) \\
& =12+\frac{2}{1-e^{-2}}=\frac{14-12 e^{-2}}{1-e^{-2}}=\frac{14 e^{2}-12}{e^{2}-1}
\end{aligned}
$$

9. Answer: $\frac{\mathbf{5}}{\mathbf{1 6}}$

Let $S=\sum_{n=0}^{\infty} \frac{n}{5^{n}}$. Then

$$
\begin{gathered}
\frac{1}{5} S=\sum_{n=0}^{\infty} \frac{n}{5^{n+1}}=\sum_{n=0}^{\infty} \frac{n+1-1}{5^{n+1}}=\sum_{n=0}^{\infty} \frac{n+1}{5^{n+1}}-\sum_{n=0}^{\infty} \frac{1}{5^{n+1}}=\sum_{n=1}^{\infty} \frac{n}{5^{n}}-\frac{\frac{1}{5}}{1-\frac{1}{5}}=S-\frac{1}{4} \\
\Rightarrow \frac{S}{5}=S-\frac{1}{4} \Rightarrow \frac{4 S}{5}=\frac{1}{4} \Rightarrow S=\frac{5}{16}
\end{gathered}
$$

10. Answer: 62.8

This sum is difficult to evaluate exactly. However, it can be closely approximated by the improper integral of the same function, which is easily evaluated using u-substitution.

$$
\begin{aligned}
\int_{0}^{\infty} \frac{d x}{50+x^{2} / 80000} & =\frac{1}{50} \int_{0}^{\infty} \frac{d x}{1+(x / 20000)^{2}} \\
& =\frac{1}{50} \int_{0}^{\infty} \frac{2000 d u}{1+u^{2}} \\
& =\frac{2000}{50}\left[\tan ^{-1} u\right]_{0}^{\infty} \\
& =40 \lim _{b \rightarrow \infty}\left(\tan ^{-1}(b)-\tan ^{-1}(0)\right) \\
& =40 \lim _{b \rightarrow \infty} \tan ^{-1}(b) \\
& =40 \frac{\pi}{2} \\
& =20 \pi \\
& \approx 62.83
\end{aligned}
$$

To see that this integral is correct to the nearest tenth, we observe that since the integrand is a monotonic function, we can bound it above and below by Riemann sums. More precisely:

$$
\sum_{n=1}^{\infty} \frac{1}{50+n^{2} / 80,000} \leq 20 \pi \leq \sum_{n=0}^{\infty} \frac{1}{50+n^{2} / 80,000}
$$

By rearranging terms, this implies that:

$$
20 \pi-\frac{1}{50} \leq \sum_{n=1}^{\infty} \frac{1}{50+n^{2} / 80,000} \leq 20 \pi
$$

From this it follows that 62.8 is indeed correct to the nearest tenth.

