1. Find the exact value of $1-\frac{1}{3!}+\frac{1}{5!}-\ldots$.
2. At RMT 2009 is a man named Bill who has an infinite amount of time. This year, he is walking continuously at a speed of $\frac{1}{1+t^{2}}$, starting at time $t=0$. If he continues to walk for an infinite amount of time, how far will he walk?
3. Evaluate $\lim _{x \rightarrow 0} \frac{10 x^{2}}{\sin ^{2}(3 x)}$.
4. Compute $\int_{0}^{1} \tan ^{-1}(x) d x$
5. Let $a(t)=\cos ^{2}(2 t)$ be the acceleration at time t of a point particle traveling on a straight line. Suppose at time $t=0$, the particle is at position $x=1$ with velocity $v=-2$. Find its position at time $t=2$.
6. Find

$$
\sum_{n=2}^{\infty} \frac{d^{n}}{d x^{n}}\left(e^{-a x}\right)
$$

for $|a|<1$.
7. Compute

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{n-k}{n^{2}} \cos \left(\frac{4 k}{n}\right)
$$

8. Evaluate $\int_{0}^{\infty} 4\lfloor x+7\rfloor e^{-2 x} d x$. Remember to express your answer as a single fraction.
9. Compute $\sum_{n=0}^{\infty} n\left(\frac{1}{5}\right)^{n}$.
10. Evaluate $\sum_{n=1}^{\infty} \frac{1}{50+n^{2} / 80000}$, as a decimal to the nearest tenth.
