1. Answer: 1681

There are 41 words in the problem statement. Since 41 is itself a prime, the answer is $41^{2}=1681$.
2. Answer: $\frac{100}{x-1} \%$

After yesterday, the fraction of the initial gold remaining is $1-\frac{1}{x}=\frac{x-1}{x}$. Therefore, in order to to reach the original amount of gold, we must multiply by $\frac{x}{x-1}=1+\frac{1}{x-1}$. Thus, the gold must be increased by $\frac{100}{x-1}$ percent.
3. Answer: $(5,0),(4,1),(1,-2)$, and $(2,-3)$

We factor the expression as follows:

$$
\begin{aligned}
a b+a-3 b-3 & =5-3 \\
(a-3)(b+1) & =2
\end{aligned}
$$

We can use a table to find appropriate values for a and b.
Thus, $(5,0),(4,1),(1,-2)$, and $(2,-3)$ are the desired solutions.

$a-3$	$b+1$	a	b
2	1	5	0
-2	-1	1	-2
1	2	4	1
-1	-2	2	3

4. Answer: $\boldsymbol{x}=1$

$$
\begin{aligned}
f(x)+x f\left(\frac{1}{x}\right) & =x \\
f\left(\frac{1}{x}\right)+\frac{1}{x} f(x) & =\frac{1}{x} \\
f\left(\frac{1}{x}\right) & =\frac{1}{x}-\frac{1}{x} f(x) \\
f(x)+x\left(\frac{1}{x}-\frac{1}{x} f(x)\right) & =x \\
x & =1
\end{aligned}
$$

5. Answer: $-\frac{\mathbf{5}}{\mathbf{4}}$

We complete the square:

$$
\begin{aligned}
2 x^{2}+2 x y+4 y+5 y^{2}-x & =\left(x^{2}+2 x y+y^{2}\right)+\left(x^{2}-x+\frac{1}{4}\right)+\left(4 y^{2}+4 y+1\right)-\left(\frac{1}{4}+1\right) \\
& =(x+y)^{2}+\left(x-\frac{1}{2}\right)^{2}+(2 y+1)^{2}-\frac{5}{4}
\end{aligned}
$$

Notice that $x=\frac{1}{2}$ and $y=-\frac{1}{2}$ would yield the minimum, which is $-\frac{5}{4}$.
6. Answer: 506

Let P_{n} be the value of the dollar in gold after the $n^{\text {th }}$ bailout. Let $s=\frac{1}{2}$. Then after the $n^{\text {th }}$ bailout, the dollar is a factor of $\left(1+s^{2^{n-1}}\right)$ of its $(n-1)^{t h}$ value. Thus,

$$
\begin{aligned}
P_{4} & =\frac{1}{980}(1+s)\left(1+s^{2}\right)\left(1+s^{4}\right)\left(1+s^{8}\right) \\
& =\frac{1}{980}\left(1+s+s^{2}+s^{3}\right)\left(1+s^{4}\right)\left(1+s^{8}\right) \\
& =\frac{1}{980}\left(1+s+s^{2}+s^{3}+s^{4}+s^{5}+s^{6}+s^{7}\right)\left(1+s^{8}\right) \\
& =\frac{1}{980}\left(1+s+s^{2}+s^{3}+s^{4}+s^{5}+s^{6}+s^{7}+s^{8}+s^{9}+s^{10}+s^{11}+s^{12}+s^{13}+s^{14}+s^{15}\right) \\
& =\frac{1}{980}\left(\frac{1-s^{16}}{1-s}\right)
\end{aligned}
$$

Plug in $s=\frac{1}{2}$, and we find that $P_{4}=\frac{1}{490}\left(1-\frac{1}{2^{16}}\right)$. So $b+c=490+16=506$.

7. Answer: 32670

Largest multiple of 60 below 2009 is 1980 , so find the sum for $k=1$ to 1979 , so that we have each value of $\lfloor k / 60\rfloor$ exactly 60 times. This sum is therefore $60(1+2+\ldots+32)=60(1+32) \frac{32}{22}=31680$. The remaining terms are all 33 , and there are $2009-1980+1=30$ of them, giving an answer of $31680+30 \times 33=32670$.
8. Answer: $\overline{\mathbf{1}} \mathbf{0} \overline{1} 1$
$(1 \overline{1} 00)(\overline{1} 1)=\overline{1} 1000+1 \overline{1} 00=\overline{1} \overline{1} 00$
$\overline{1} \overline{1} 00+1 \overline{1} 1=\overline{1} 0 \overline{1} 1$

9. Answer: $\mathbf{- 5 8}$

Let the roots be r, s, and t. Then they satisfy $r+s+t=-a, r s+s t+r t=b$, and $r s t=-c$. So we have $-(a+b+c+1)=r+s+t-r s-r t-s t+r s t-1=(r-1)(s-1)(t-1)=2009=7 * 7 * 41$.
Thus the roots are 8,8 , and 42 , and $a=-(r+s+t)=-58$.

10. Answer: 20

For convenience, set $x=\sum_{n=1}^{\infty} \frac{\delta(n)}{n^{2}}$ and $y=\sum_{n=0}^{\infty} \frac{(-1)^{n-1} \delta(n)}{n^{2}}$.

The crucial observation is that $\frac{1}{2}(x+y)$ and $\frac{1}{2}(x-y)$ give the same summation as x, restricted to the terms with odd n and even n respectively. The latter summation is easily related to x using the fact that $\delta(2 n)=\delta(n)$ (since multiplying by 2 is simply appending a 0 in the binary expansion), as follows.

$$
\begin{aligned}
\frac{1}{2}(x-y) & =\sum_{\text {even } n \geq 2} \frac{\delta(n)}{n^{2}} \\
& =\sum_{n=1}^{\infty} \frac{\delta(2 n)}{(2 n)^{2}} \\
& =\sum_{n=1}^{\infty} \frac{\delta(n)}{4 n^{2}} \\
& =\frac{1}{4} x .
\end{aligned}
$$

Thus we have $\frac{1}{2}(x-y)=\frac{1}{4} x$. It follows that $x=2 y$, so $x / y=2$. Thus, the desired answer is 20 .

