1. Answer: $\frac{1}{324}$

The conditions implies that $|a-1|=|b-2|=|c-3|=|d-6|=1$. a can equal $2, b$ can equal 1 or 3 , c can equal 2 or 4 , and d can equal 5 . So the probability is $\frac{1}{6} * \frac{2}{6} * \frac{2}{6} * \frac{1}{6}=\frac{1}{324}$.

2. Answer: 3, 7

Zero is the only digit with square ending in 0 . The square of a number ending in zero will therefore end in two zeros. Next digit of the number therefore needs a square ending in 9 , so it is 3 or 7 .
3. Answer: $\frac{147}{52}$

The number of teeth meshed does not vary. Thus, if n is the number of revolutions that gear 10 make, then $(5(1)+21)(21)=(5(10)+2) n \Rightarrow n=\frac{7 \times 21}{52}=\frac{147}{52}$.
4. Answer: 245

If we make our team all the same type, then there are $\binom{7}{6}+\binom{6}{6}+\binom{4}{6}+\binom{8}{6}=7+1+0+28=36$ ways to do this. If we make our team partially bug and partially rock type, there are $\binom{6}{2}\binom{4}{4}+\binom{6}{3}\binom{4}{3}+$ $\binom{6}{4}\binom{4}{2}+\binom{6}{5}\binom{4}{1}=15 * 1+20 * 4+15 * 6+6 * 4=15+80+90+24=209$ ways. Any other combination of types will not work. This gives a total of 245 ways.
5. Answer: 1820, or $\binom{13}{1}+3\binom{13}{2}+3\binom{13}{3}+\binom{13}{4}$

We proceed by casework.
Case 1 All cards have the same face value. There are $\binom{13}{1}$ ways to choose the face values.
Case 2 Some cards have face value A; some have face value B. There are $\binom{13}{2}$ ways to choose A and B. One can have the combinations $A B B B, A A B B, A A A B$, so there are $3\binom{13}{2}$ distinct ways for this case.
Case 3 Some cards have value A, some B, and some C. There are $\binom{13}{3}$ ways to choose the A, B, C. One can have the combinations $A B C C, A B B C$, and $A A B C$. There are $3\binom{13}{2}$ distinct ways for this case.
Case 4 The cards are distinct: $A B C D$. There are $\binom{13}{4}$ ways to do this. Since these cases are mutually exclusive, we have $\binom{13}{1}+3\binom{13}{2}+3\binom{13}{3}+\binom{13}{4}=1820$ distinct hands.
6. Answer: $0, \pm 2,1 \pm i \sqrt{3},-1 \pm i \sqrt{3}$

Clearly 0 is a solution. Now we assume $z \neq 0$. We have $\left|z^{5}\right|=|16 \bar{z}|$. By DeMoivre's Theorem, $\left|z^{5}\right|=|z|^{5}$. The left hand side becomes $\left|z^{5}\right|=16|\bar{z}|=16|z|$. Equating the two sides, $16|z|=|z|^{5} \Rightarrow$ $|z|^{4}=16 \Rightarrow|z|=2$.
Multiplying both sides of the given equation by z,

$$
z^{6}=16|z|^{2}=64
$$

Let $z=r(\cos \theta+i \sin \theta)$. Then $r^{6}(\cos (6 \theta)+i \sin (6 \theta))=64$. Thus, $r=2$ and $6 \theta=360 k$, for $k=$ $0,1,2,3,4,5$. So our other solutions are $2,2 \operatorname{cis}\left(60^{\circ}\right), 2 \operatorname{cis}\left(120^{\circ}\right),-2,2 \operatorname{cis}\left(240^{\circ}\right), 2 \operatorname{cis}\left(300^{\circ}\right)$, which are equal to $\pm 2,1 \pm i \sqrt{3},-1 \pm i \sqrt{3}$.
7. Answer: $e^{\frac{\pi}{6} i}$, or $\pm \frac{\sqrt{3}+i}{2}$

Let $x=\sqrt{\frac{1+\sqrt{3} i}{2}}$. Then $x^{2}=\frac{1+\sqrt{3} i}{2}$. Converting to polar form, $\frac{1+\sqrt{3} i}{2}=\left(e^{\frac{\pi}{3} i}\right)^{\frac{1}{2}}=e^{\frac{\pi}{6} i}=\frac{\sqrt{3}+i}{2}$
8. Answer: $\frac{13}{33}$

If the first toss comes up heads ($2 / 3$ probability), Frank has a $1 / 4$ chance of getting another heads, a $(3 / 4) *(1 / 3)=1 / 4$ chance of getting two successive tails, and a $(3 / 4) *(2 / 3)=1 / 2$ chance of getting tails-heads and winding up back at his current position of tossing the " $1 / 4-3 / 4$ " coin with the previous toss being a heads. Expressing the probabilities as geometric series (or just the weighted probability of the two nonrepeating options), he has a $1 / 2$ chance of getting HH first and a $1 / 2$ chance of getting

TT first. If instead, the first toss comes up tails ($1 / 3$ probability), he has a $3 / 4$ chance of getting another tails, a $(1 / 4) *(2 / 3)=2 / 12$ chance of getting two successive heads, and a $(1 / 4) *(1 / 3)=1 / 12$ chance of getting heads-tails and winding up back at my current state. Expressing the probabilities as a geometric series, he has a $2 / 11$ chance of getting HH first and a $9 / 11$ chance of getting TT first. The probability of getting HH before TT is $(2 / 3) *(1 / 2)+(1 / 3) *(2 / 11)=13 / 33$.

9. Answer: 590

Expanding out the recurrence relations, we confirm that the triangular numbers are $T_{n}=1+2+3+$ $\cdots+n=\frac{n(n+1)}{2}$ and the square numbers are $S_{n}=n^{2}$. A general formula for the pentagonal numbers is therefore $\stackrel{2}{P}_{n}=n^{2}+n(n-1) / 2=n(3 n-1) / 2$. Substituting $n=20$ gives $P_{20}=20(60-1) / 2=590$.
10. Answer: 6
$e^{i \pi / 3}+e^{2 i \pi / 3}+e^{3 i \pi / 3}+e^{4 i \pi / 3}+e^{5 i \pi / 3}+e^{6 i \pi / 3}$ sum to 0 because the terms are sixth roots of unity (i.e. they satisfy $z^{6}-1=0$, which is a 6 th degree polynomial whose 5 th degree coefficient is 0). Likewise, $e^{2 i \pi / 3}+e^{4 i \pi / 3}+e^{6 i \pi / 3}$ sum to zero because the terms are cubic roots of unity. $e^{3 i \pi / 3}+e^{6 i \pi / 3}$ sum to 0 because they are square roots of unity. Subtracting these sums from the original expression, we are left with only $6 e^{6 i \pi / 3}$, which is $6(\cos (2 \pi)+i \sin (2 \pi))=6$.

