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1.

RI←→ RII←→

RII←→ RIII←→ RII←→

2. The basic one- and two-crossing knots are shown below; all others are the same as these with crossing
of the kinks reversed. They can all be transformed into the unknot using only RI.

3.

RII←→ RIII←→ RI←→ RI←→ RIII←→ R0←→

4. (a) The crossing number is a minimum over all manipulations, and if two knots are equivalent, they
can be transformed into each other, and therefore into all the same knots. They must therefore
have the same crossing number.

(b) The R-moves can never change the number of components, since they do not cut and rejoin arcs.
Thus the number of components for two equivalent links must be the same.

5. (a) The Hopf link has two positive crossings, giving it linking number 2. The Borromean rings have
three each positive and negative crossings, so they have linking number 0.

(b) The linking number of a knot is by definition 0, so it is a knot invariant.

(c) Since two knots are equivalent if and only if they are connected by a sequence of R-moves, we
must simply show that R-moves do not change the linking number. The part of a knot outside
the effects of the R-move does not change, so we just consider how the crossings changed by the
R-move affect the linking number. Clearly R0 moves do not affect it. RI moves remove/add a
crossing, but it is always a self-crossing, so it never contributes to the linking number. For RII
moves, we can similarly ignore the self-crossing case; if the two crossings belong two different
components, they always have opposite sign, so contribution to linking number is always zero.
Finally, RIII moves have three crossings. One is unchanged by the move, and the other two keep
the same sign, so the linking number is again unchanged. Since none of the R-moves change
linking number, it is a link invariant.

6. The three arcs of the trefoil may be colored all the same (3 possibilities) or all different (6 possibilities),
so τ = 9

7. We again consider the R-moves, with R0 obviously not affecting τ . We would like to show that every
coloring of the knot before the move corresponds to exactly one coloring of the knot after the move.

For an RI move, any coloring of the initial or final picture must be all the same color c, so the colorings
are essentially equivalent.
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For RII, the initial picture must have the top two ends the same color a, and from the constraint, the
bottom two ends must be the same color b (if a = b the middle arc must also be that color, and if
a 6= b the middle arc is the third color c). The final picture must also have the top two ends the same
color and the bottom two ends the same color, so a coloring of either defines a coloring of the other.

For RIII, there are five cases, based on the colors of the three left-hand ends. They could be all the
same, all different, or two the same and one different (giving three cases for the odd one out). It can
quickly be seen that each case determines the colors of the three right-hand ends, and matching end
colors to the final picture creates a unique coloring.

Therefore, all R-moves preserve τ , so it is a link invariant.

8. The splitting of each knot to form the connect sum breaks apart an arc which was all the same color.
A valid coloring of the sum can have any valid coloring of each summand, so long as they agree on
the joining segments. Suppose that the colors are a, b, c, and without loss of generality that the first
summand has color a on the split arc. Since a coloring of the second summand is still a valid coloring
with two colors switched, 1

3 of the colorings will have a on the split segment, 1
3 will have b, and 1

3 will
have c. Multiplying the number of choices for each knot gives the formula:

τ(K1#K2) =
1
3
τ(K1)τ(K2)

9. We calculated that τ of the trefoil knot is 9. Therefore, τ of a connect sum of n trefoils is
(

1
3

)n−1 9n =
9 · 3n−1. This takes a different value for each n, so the connect sums of trefoils are never equivalent to
each other, and there are infinitely many distinct knots.

10. Before turning the cylinder into a torus, number the points at the left end of the segments x1, x2, . . . , xp.
To find a component, start at a point xi1 and follow it around the torus once, so that we are at a
point xi2 which is rotated by 2π q

p from xi1 . Repeat this until the component closes up, that is, until
xin = xi1 . We must have come an integer number of full rotations from xi1 , so we must have 2π q

pn

be a multiple of 2π. The first time this happens is when n = p
gcd(p,q) . Each component therefore uses

up p
gcd(p,q) of the points, so the number of components is gcd pq. The special case of a knot has one

component, so torus knots must have gcd pq = 1.

11. 〈 〉
= A

〈 〉
+A−1

〈 〉

= A

(
A

〈 〉
+A−1

〈 〉)

+A−1

(
A

〈 〉
+A−1

〈 〉)
= A2(−A2 −A−2) + 1 + 1 +A−2(−A2 −A−2)

= −A4 −A−4

In finding the Kauffman bracket of the trefoil, we take advantage of the previous calculation for the
Hopf link, and the calculation for the one-crossing knot included therein.
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〈 〉
= A

〈 〉
+A−1

〈 〉

= A(−A4 −A−4) +A−1

A〈 〉
+A−1

〈 〉
= A(−A4 −A−4) +

〈 〉
+A−2(−A2 −A−2)

〈 〉

= −A5 −A−3 + (−A−4)

〈 〉
= −A5 −A−3 + (−A−4)(−A3)

= −A5 −A−3 +A−1

12. The bracket is not RI invariant:〈 〉
= A

〈 〉
+A−1

〈 〉
= A

〈 〉
+A−1

〈 〉
(−A2 −A−2)

= (A−A−A−3)
〈 〉

That is, an RI move changes the bracket by a factor of −A−3. Similarly, a reverse RI move changes it
by a factor of −A3.

The bracket is RII invariant:〈 〉
= A

〈 〉
+A−1

〈 〉
= A

(
A

〈 〉
+A−1

〈 〉)
+A−1

(
A

〈 〉
+A−1

〈 〉)
= A2

〈 〉
+ (−A2 −A−2)

〈 〉
+A

〈 〉
+A−2

〈 〉
=
〈 〉

The bracket is RIII invariant (using RII invariance in the calculation):〈 〉
= A

〈 〉
+A−1

〈 〉
= A

〈 〉
+A−1

〈 〉
=
〈 〉

13. Clearly the writhe is invariant under R0. Our proofs for RII and RIII invariance of linking number
hold here as well. For RI, the crossing in the kink has sign +1 (and −1 for RI2) and is removed by RI,
so the writhe changes by −1 under RI (and +1 under RI2).



RMT 2008 Power Solutions February 23, 2008

14. Since both writhe and Kauffman brackets are invariant under RII and RIII, the Jones polynomial is
as well. Under an application of RI, the bracket changes by a factor of (−A3), which is made up for
by a loss of a factor of −A3 when the writhe in the exponent decreases by 1. We have shown that the
Jones polynomial is constant under all R-moves, and is therefore a link invariant.

15. As we’ve seen when calculating examples, the Kauffman bracket ultimately expands to powers of A
multiplied by n−1 factors of (−A2−A−2), where n is the number of disjoint unknots left after applying
the recursive relation repeatedly. Suppose we first apply the relation to D1 in the disjoint union. If D1

creates n unknots, we must remove them all to begin working on D2 by itself - this is one more unknot
than we would have had to remove when working just with D1, so all terms have an extra factor of
(−A2 −A−2) compared to 〈D1〉. All terms also still have 〈D2〉 multiplied onto them. Factoring these
two parts out gives 〈D1

∐
D2〉 = (−A2 −A−2) 〈D1〉 〈D2〉. The writhe is a sum over all crossings, so it

is the sum of the writhes of the individual links D1 and D2. The Jones polynomial is therefore

fD1
‘

D2(A) = (−A3)−w(D1+D2)(−A2 −A−2) 〈D1〉 〈D2〉 = (−A2 +A−2)fD1(A)fD2(A)

16. We can make a similar argument to that seen in the disjoint union, being careful to consider what
happens to the two arcs connecting D1 to D2 as we reduce it using the recursion relation by considering
the two crossings in D1 neighboring those two arcs. If we apply all the transformations for a particular
term in the bracket that would reduce D1 to n disjoint unknots, those two crossings must have been
reduced. Since the link must remain connected, the two arcs must eventually be joined, meaning that
effectively those two crossings became connected. Without the connect sum, this would have led to an
unknot, but now it simply creates an unknot joined to D2 by a connect sum. We therefore get only
n − 1 disjoint unknots from D1 before being fully reduced to D2, which is exactly what would have
gone into the calculation of 〈D1〉. As with the previous problem, the writhe is unaffected, so the Jones
polynomial is

fD1#D1(A) = (−A3)−w(D1+D2) 〈D1〉 〈D2〉 = fD1(A)fD2(A)

17. Mirroring a knot inverts the writhe (positive and negative crossings are switched). The Kauffman
bracket switches A and A−1 in the recursive part of the definition; everything else is unaffected. In
the Jones polynomial, we therefore flip the sign of the exponent of (−A3), and switch A and A−1 in
the bracket, therefore switching A and A−1 in the entire polynomial. Thus an amphichiral knot has
palindromic Jones polynomial (that is, the coefficient of Ak is the same as that of A−k, while a chiral
knot does not. As seen in the earlier calculation, the Kauffman bracket of one of the trefoil knots is
−A5 − A−3 + A−1. This cannot be made palindromic by multiplying by a power of A, so the trefoil
knot must be chiral.


