1. Answer: 10

Label three consecutive vertices of the polygon A, B, and C. Let $B P$ be the common side to the pentagons placed on sides $A B$ and $B C$. Then $m \angle A B P=m \angle P B C=108^{\circ}$. Since $m \angle A B P+$ $m \angle P B C+m \angle A B C=360^{\circ}$, this gives $m \angle A B C=144^{\circ}$. So the exterior angle of this polygon is 36, and thus it has 10 sides.

2. Answer: $8 \sqrt{2}$

Notice that the ball travels the length of the room twice and the width of the room twice, so it's traveled a total of 8 meters in the horizontal direction and 8 meters in the vertical direction. Because the ball is bouncing (and thus its path after a bounce is the same as its path before the bounce, but reflected), we can rearrange the four segments of its path into a straight line by only reflection and translation. This line travels 8 meters horizontally and 8 meters vertically, so its length, which is the total length of the ball's path, is $8 \sqrt{2}$.
3. Answer: $\frac{\sqrt{3} \pi}{2}$

Since the space diagonal of the cube is a diameter of the sphere, we have $s \sqrt{3}=2 r$. The ratio is then

$$
\frac{\frac{4}{3} \pi r^{3}}{\left(\frac{2 r}{\sqrt{3}}\right)^{3}}=\frac{\sqrt{3} \pi}{2}
$$

4. Answer: $288 \sqrt{3}-432$

Let r be the radius of a small circle. The centers of the small circles form an equilateral triangle of side length $2 r$. The length of the median of such a triangle is $\sqrt{3} r$, so the distance from the center of the triangle (which is also the center of the large circle) to a vertex is $\frac{2 \sqrt{3}}{3} r$. Since each vertex of the triangle is distance r from the edge of the large circle, the radius of the large circle is $\frac{2 \sqrt{3}}{3} r+r=144$. This gives $(2 \sqrt{3}+3) r=432$, so $r=\frac{432}{2 \sqrt{3}+3} \cdot \frac{2 \sqrt{3}-3}{2 \sqrt{3}-3}=144(2 \sqrt{3}-3)=288 \sqrt{3}-432$.
5. Answer: $15^{\circ}+\tan ^{-1} x$ or $\frac{\pi}{12}+\tan ^{-1} x$

From basic trigonometry, we have $\tan (m \angle B)=\frac{2-\sqrt{3}+x}{1-(2-\sqrt{3}) x}$. This is the tangent angle addition identity, for angles with tangents x and $2-\sqrt{3}$. Since $\tan \left(15^{\circ}\right)=2-\sqrt{3}, m \angle B$, the inverse tangent, is therefore $15^{\circ}+\tan ^{-1} x$.
6. Answer: $\frac{44}{13}$

Let $\alpha=m \angle E$ and $\beta=m \angle F$. Note that D is a right angle. Therefore, $\sin \alpha=\frac{5}{13}$. $[C B F]=$ $\frac{1}{2} \cdot 11^{2} \sin \alpha=\frac{1}{2} \cdot 121 \cdot \frac{5}{13}$. Similarly, $[A B E]=\frac{1}{2} \cdot 2^{2} \sin \beta=\frac{1}{2} \cdot 4 \cdot \cos \alpha=\frac{1}{2} \cdot 4 \cdot \frac{12}{13}$. Finally, $[A C D]=\frac{3 \cdot 1}{2}$. Subtracting these three areas from that of $\triangle D E F$ gives the result.

7. Answer: $2008^{2} \pi$ or 4032064π

Note that we can scale the triangle down by a factor of 2008 to a $3,4,5$ right triangle. Let $\overline{A B}, \overline{A C}$ be the legs of the triangle. The incircle splits $\overline{A B}$ into two segments of lengths x and y. It similarly splits $\overline{A C}$ into segments of lengths x and z and $\overline{B C}$ into segments of lengths y and z. Thus, we get:

$$
\begin{aligned}
& x+y=3 \\
& x+z=4 \\
& y+z=5
\end{aligned}
$$

Thus, $x=1, y=2, z=3$. Thus, the incircle has a radius of 1 , and so an area of π. Scaling back up will increase the incircle's radius by a factor of 2008 , giving us an area of $2008^{2} \pi$.
8. Answer: $\frac{\sqrt{30}}{3}$

Let O be the center of the circle, and X be the center of the rhombus (the intersection of $\overline{A C}$ and $\overline{B D})$. Let $m \angle A B C=\theta=\cos ^{-1}\left(-\frac{2}{3}\right)$. Considering $\triangle O B X$ and $\triangle A B X$, using triangle angle sums and the fact that an inscribed angle has half the measure of the intercepted arc, we have $O X=$ $\cos (\pi-\theta)$, so $A X=1+\cos (\pi-\theta)$. Also, $B X=\sin (\pi-\theta)$. The Pythagorean theorem then gives $l=\sqrt{2(1+\cos (\pi-\theta)}=\sqrt{2\left(1+\frac{2}{3}\right)}$.
9. Answer: 12

Let the trapezoid be $A B C D$ with $A B=10, C D=15$. Let P be the intersection of the diagonals, and let $\overline{X Y}$ be the segment through P parallel to the bases with X on $\overline{A D}$ and Y on $\overline{B C}$. Note that $\triangle P Y C \sim \triangle A B C$, so $\frac{P Y}{A B}=\frac{Y C}{B C}$. Also, $\triangle P Y B \sim \triangle D C B$, so $\frac{P Y}{C D}=\frac{B Y}{B C}$. Adding these equations gives $\frac{P Y}{A B}+\frac{P Y}{C D}=\frac{B Y+Y C}{B C}=1$, so $P Y\left(\frac{1}{10}+\frac{1}{15}\right)=P Y \cdot \frac{1}{6}=1$, hence $P Y=6$.
The same argument shows that $P X=6$, so $X Y=12$.
10. Answer: 3

The polygon has angles of 171°, and the smallest triangle has two adjacent sides of the original polygon as two of its sides. The area of this triangle is $\frac{1}{2} \cdot 1 \cdot 1 \cdot \sin (171)=\frac{1}{2} \sin (9)$. So the question is, how many square roots do we need to express $\sin (9)$? Conveniently enough, $\sin (18)=\frac{\sqrt{5}-1}{4}$, so $\cos (18)=\sqrt{1-\sin ^{2}(18)}$, which requires two square roots to express. Then by the half-angle formula, $\sin (9)=\sqrt{\frac{1-\cos (18)}{2}}$, which requires three square roots.

