1. Answer: $\frac{1}{2}$

Using the product to sum trigonometric identity, we get:

$$
\begin{aligned}
\int_{0}^{\pi / 2} \sin x \cos x d x & =\int_{0}^{\pi / 2} \frac{1}{2}(\sin 2 x-\sin 0) d x \\
& =\frac{1}{2} \int_{0}^{\pi / 2} \sin 2 x d x \\
& =\left.\frac{1}{2}\left(-\frac{1}{2} \cos 2 x\right)\right|_{0} ^{\pi / 2} \\
& =\frac{1}{2}(1 / 2-(-1 / 2)) \\
& =\frac{1}{2}(1) \\
& =1 / 2
\end{aligned}
$$

2. Answer: 30

Two applications of L'Hôpital's rule are necessary to obtain a fraction which does not divide by zero; the result is

$$
\frac{20-3 x}{\frac{2}{3} e^{x^{2}}+\frac{4}{9} x^{2} e^{x^{2}}}=\frac{20-0}{\frac{2}{3}+0}=30
$$

3. Answer: $\frac{8}{3}$

The graph is a figure-8. By symmetry, the area it encloses is four times the area under the curve that we get from just considering $0 \leq t \leq \frac{\pi}{2}$. For these values of t, we can write $y=2 \sin (t) \cos (t)=2 x \sqrt{1-x^{2}}$ for $0 \leq x \leq 1$. But this is integrable easily enough by letting $u=1-x^{2}$. The antiderivative that we get is $-\frac{2}{3} u^{\frac{3}{2}}$, which gives an area of $\frac{2}{3}$. Thus the total area enclosed by the parametric graph is $\frac{8}{3}$.

4. Answer: n !

You can think of taking the derivatives this way, in an extended version of the product rule: For each $j \leq n$, let $f_{j}(x)=\sin (x)$. Then $f(x)=f_{1}(x) f_{2}(x) \ldots f_{n}(x)$. Each time you take the derivative, you pick one of the f_{j} 's and replace it with its derivative. Some f_{j} 's might be differentiated more than once in this process. To find the derivative of f, take the results from each way of choosing the f_{j} 's to differentiate and add them all up.

That said, since $\sin (0)=0$, if any f_{j} doesn't get differentiated, it'll make the whole product zero when $x=0$, so these terms don't matter. But we're only taking the nth derivative, so if every f_{j} gets differentiated at least once, then they all have to be differentiated exactly once. There are n ! remaining terms (the number of ways to choose what order we differentiate the f_{j} 's in), each of which is $\cos ^{n}(0)=1$, so the value we want is just n !.

5. Answer: $\frac{625}{32}$

Let $w(t)$ and $s(t)$ denote the amounts of water and salt, respectively, in the tank at time t. We can immediately see that $w(t)=t+100$. Since the tank is constantly mixed, we know that

$$
\begin{aligned}
\frac{d s}{d t} & =-2 \frac{s(t)}{w(t)} \\
\frac{d s}{s} & =-2 \frac{d t}{t+100} \\
\ln (s) & =-2 \ln (C(t+100)) \\
s & =\frac{C}{(t+100)^{2}}
\end{aligned}
$$

Since $s(0)=50, C=500000$, so $s(60)=625 / 32$.
6. Answer: $\frac{1}{10} e^{3 x}(3 \sin (x)-\cos (x))$

Let I be the answer. Integrating by parts twice:

$$
\begin{aligned}
I & =\frac{1}{3} e^{3 x} \sin (x)-\int \frac{1}{3} e^{3 x} \cos (x) d x \\
& =\frac{1}{3} e^{3 x} \sin (x)-\frac{1}{9} e^{3 x} \cos (x)-\frac{1}{9} I \\
I & =\frac{9}{10}\left(\frac{1}{3} e^{3 x} \sin (x)-\frac{1}{9} e^{3 x} \cos (x)\right)
\end{aligned}
$$

7. Answer: $\frac{1}{2} e^{2}$

Multiply the sum by 2 and you get $\sum_{n=0}^{\infty} \frac{2^{n}}{n!}$.
Now notice that the nth derivative of $e^{2 x}$ is $2^{n} e^{2 x}$, which gives 2^{n} evaluated at $x=0$. The Taylor series for $e^{2 x}$ around $x=0$ is thus $\sum_{n=0}^{\infty} \frac{2^{n}}{n!} x^{n}$. Evaluated at $x=1$, this gives the sum above, so the sum we want is equal to $\frac{1}{2} e^{2}$.
8. Answer: $\tan ^{-1} x$ or $\tan ^{-1}(x)+a x+b$

The limit is, by definition, $\frac{1}{f^{\prime \prime}(x)}$. Therefore:

$$
\begin{aligned}
\frac{1}{f^{\prime \prime}(x)} & =-\frac{x^{4}+2 x^{2}+1}{2 x}=-\frac{\left(1+x^{2}\right)^{2}}{2 x} \\
f^{\prime \prime}(x) & =-\frac{2 x}{\left(1+x^{2}\right)^{2}} \\
f^{\prime}(x) & =\frac{1}{1+x^{2}} \\
f(x) & =\tan ^{-1} x
\end{aligned}
$$

9. Answer: $\frac{a_{n-7}-(n-1) a_{n-1}}{n(n-1)}$

Plugging the power series into the differential equation gives:

$$
\begin{aligned}
\sum n(n-1) a_{n} t^{n-2}+\sum n a_{n} t^{n-1} & =\sum a_{n} t^{n+5} \\
\sum n(n-1) a_{n} t^{n-2}+\sum(n-1) a_{n-1} t^{n-2} & =\sum a_{n-7} t^{n-2} \\
n(n-1) a_{n} t^{n-2}+(n-1) a_{n-1} t^{n-2} & =a_{n-7} t^{n-2} \\
n(n-1) a_{n}+(n-1) a_{n-1} & =a_{n-7}
\end{aligned}
$$

10. Answer: $\frac{x(2 e)^{x}}{1+\ln 2}-\frac{\left.(2 e)^{x}\right)}{(1+\ln 2)^{2}}$

$$
\begin{aligned}
\int_{-\infty}^{x} t 2^{t} e^{t} d t & =\left[t \frac{1}{\ln (2 e)}(2 e)^{t}\right]_{-\infty}^{x}-\int_{-\infty}^{0} \frac{1}{\ln 2 e}(2 e)^{t} d t \\
& =\frac{x(2 e)^{x}}{1+\ln 2}-\left[\frac{(2 e)^{t}}{(1+\ln 2)}\right]_{-\infty}^{x} \\
& =\frac{x(2 e)^{x}}{1+\ln 2}-\frac{(2 e)^{x}}{(1+\ln 2)^{2}}
\end{aligned}
$$

