1. Answer: 28

$$
\left\{\begin{array}{l}
r=2 g \\
g-4=2(d-4) \\
r+10=2(d+10)
\end{array}\right.
$$

So $r=2 g=2(2(d-4)+4)=4 d-8=4(r / 2-5)-8=2 r-28 \Rightarrow r=28$.
2. Answer: 5

Divide the equation $P(x)=0$ by x^{3} to get $x^{3}+a x^{2}+b x+1+b \frac{1}{x}+a \frac{1}{x^{2}}+\frac{1}{x^{3}}=0$. In this equation, replacing x by $\frac{1}{x}$ doesn't change anything, so anytime x is a root of $P(x)=0, \frac{1}{x}$ is also a root. Any root other than ± 1 (since 0 isn't a root) must be paired with another, namely its reciprocal. And 1 is a root, while -1 is not. So the total number of real roots must be odd. Note that having an odd number of distinct real roots requires that 1 be a double root. This makes the maximum number of real roots 5 .
3. Answer: $\{\boldsymbol{i},-\boldsymbol{i}, \mathbf{1}\}$

First, notice that the three solutions are symmetric. We write our conditions as a system of equations:

$$
\left\{\begin{array}{l}
a+b+c=1 \tag{1}\\
a b+b c+c a=1 \\
a b c=1
\end{array}\right.
$$

(3) can be rewritten $c=1 / a b$. Substituting that in (2), we get

$$
\begin{aligned}
a b+\frac{b}{a b}+\frac{a}{a b} & =1 \\
a b+1 / a+1 / b & =1 \\
a^{2} b+1+a / b & =1 \\
a(a b+1 / b) & =0
\end{aligned}
$$

Because we know from (3) that $a=0$ cannot be a solution, we throw it out:

$$
\begin{aligned}
a b+1 / b & =0 \\
a & =-1 / b^{2}
\end{aligned}
$$

Substituting this as well as our expression for c in (1), we get:

$$
\begin{aligned}
\frac{-1}{b^{2}}+b+\frac{1}{-1 / b^{2}(b)} & =1 \\
\frac{-1}{b^{2}}+b-b & =1 \\
\frac{-1}{b^{2}} & =1 \\
b & = \pm i
\end{aligned}
$$

Letting any two variables be $-i$ and i, we easily find using any of our three equations that the third must equal 1.
4. Answer: $\frac{1}{2}$

$$
\begin{aligned}
0 & =(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2(x y+x z+y z) \\
\frac{-1}{2} & =x y+y z+x z \\
\frac{1}{4} & =(x y+y z+x z)^{2}=x^{2} y^{2}+x^{2} z^{2}+y^{2} z^{2}+2\left(x^{2} y z+x y^{2} z+x y z^{2}\right) \\
& =x^{2} y^{2}+x^{2} z^{2}+y^{2} z^{2}+2 x y z(x+y+z)=x^{2} y^{2}+x^{2} z^{2}+y^{2} z^{2} \\
1 & =\left(x^{2}+y^{2}+z^{2}\right)^{2}=x^{4}+y^{4}+z^{4}+2\left(x^{2} y^{+} x^{2} z^{2}+y^{2} z^{2}\right) \\
1 & =x^{4}+y^{4}+z^{4}+2 \cdot \frac{1}{4}
\end{aligned}
$$

5. Answer: $3 x^{2}+61 x+2008$

The highest power of x that can occur in the determinant is x^{2}, so $D(x)$ must be quadratic; let it be $a x^{2}+b x+c$. The constant term is $c=D(0)=2008$, so we have $D(-1)-2008=-58=a-b$ and $D(2)-2008=134=4 a+2 b$. Solving the pair of linear equations gives $a=3$ and $b=61$.

6. Answer: 45

By the quadratic formula, the solutions to $x^{2}-x-k=0$ are precisely

$$
\frac{1 \pm \sqrt{1+4 k}}{2}
$$

These solutions are integers precisely when $1 \pm \sqrt{1+4 k}$ is an even integer, i.e. when $\sqrt{1+4 k}$ is an odd integer. Since $1+4 k$ is itself odd, $\sqrt{1+4 k}$ is an odd integer precisely when $1+4 k$ is a perfect square.
Thus, we are interested in how many (nonnegative, to avoid double counting) integers a give an integer solution for k with $0 \leq k \leq 2008$ in $1+4 k=a^{2}$, or equivalently to $4 k=a^{2}-1$. Notice that $a^{2}-1$ is divisible by 4 precisely when a is odd. The only other restriction on a is that $4 \cdot 2008 \geq a^{2}-1$. Since $89<\sqrt{4 \cdot 2008+1}<90$, there are $\frac{90}{2}=45$ values for a such that $4 k=a^{2}-1$ has an integer solution for k with $0 \leq k \leq 2008$. Consequently, there are 45 values for k such that $x^{2}-x-k=0$ has integer solutions for k.

7. Answer: $(16,64)$

Since $2 p^{2}+q^{2}$ is even, q must be even, so we divide through by 2 to obtain $p^{2}+2\left(\frac{q}{2}\right)^{2}=2304$. Now, p must be even, so we divide through by 2 again. Repeating until the number on the right is no longer even, we find that $\left(\frac{p}{16}\right)^{2}+2\left(\frac{q}{32}\right)^{2}=9$, where $\frac{p}{16}$ and $\frac{q}{32}$ are integers. This has the obvious solution $1^{2}+2 \cdot 2^{2}=9$, which gives $(p, q)=(16,64)$.
8. Answer: 16

$$
\begin{aligned}
P(x) Q(x) & =x^{4}-1 \\
& =\left(x^{2}-1\right)\left(x^{2}+1\right) \\
& =(x-1)(x+1)(x-i)(x+i)
\end{aligned}
$$

We have four distinct monomial factors, so the number of possible $P(x)$ is $\binom{4}{0}+\binom{4}{1}+\binom{4}{2}+\binom{4}{3}+\binom{4}{4}=16$.

9. Answer: 16

Solving the equation for y gives $y=\frac{x-43}{x-1}$. Essentially, we are now finding all $z=x-1$ s.t. $z \mid z-42 \Rightarrow$ $z \mid 42$, since $z \mid z$. The possible values for z are $\{ \pm 1, \pm 2, \pm 3, \pm 6, \pm 7, \pm 14, \pm 21, \pm 42\}$. There is one pair (x, y) for each of these.
10. Answer: $\frac{\mathbf{5}}{\mathbf{1 6}}$

Let $S=\sum_{k=1}^{\infty} \frac{k}{5^{k}}$. Then,

$$
\begin{aligned}
5 S & =5 \sum_{k=1}^{\infty} \frac{k}{5^{k}}=\sum_{k=1}^{\infty} \frac{k}{5^{k-1}}=\sum_{k=0}^{\infty} \frac{k+1}{5^{k}}=\sum_{k=0}^{\infty} \frac{k}{5^{k}}+\sum_{k=0}^{\infty} \frac{1}{5^{k}} \\
& =0+\sum_{k=1}^{\infty} \frac{k}{5^{k}}+\sum_{k=0}^{\infty} \frac{1}{5^{k}}=S+\sum_{k=0}^{\infty} \frac{1}{5^{k}} \\
4 S & =\sum_{k=0}^{\infty} \frac{1}{5^{k}}=\frac{1}{1-\frac{1}{5}}=\frac{5}{4} \\
S & =\frac{5}{16}
\end{aligned}
$$

