Power Solutions

2007 Rice Math Tournament
February 24, 2007

1. $n \leq x<n+1$ if and only if n is the greatest integer less than or equal to x. The second condition is equivalent to the first since $x-1<n \Rightarrow x<n+1$. The corresponding statements are $\lceil x\rceil=n \Longleftrightarrow$ $n-1<x \leq n \Longleftrightarrow x \leq n<x+1$.
2. From the first problem, we have $\lfloor-x\rfloor=n \Rightarrow n \leq-x<n+1 \Rightarrow-n-1<x \leq-n \Rightarrow-n=\lceil x\rceil$.
3. Assume first that $x<n$. Then by problem $1,\lfloor x\rfloor \leq x<n$. Now assume $\lfloor x\rfloor<n$; by problem 1 we know $x<\lfloor x\rfloor+1$, and since both are integers, $\lfloor x\rfloor \leq n$. Similarly, $n<x \Longleftrightarrow n<\lceil x\rceil$, $x \leq n \Longleftrightarrow\lceil x\rceil \leq n$, and $n \leq x \Longleftrightarrow n \leq\lfloor x\rfloor$.
4. Let $m=\lfloor n+x\rfloor$. Then $m \leq n+x<m+1$, so $m-n \leq x<m-n+1$, so $\lfloor x\rfloor=m-n$ and thus $m=n+\lfloor x\rfloor$. Similarly $\lceil n+x\rceil=n+\lceil x\rceil$.
5. We split x into floor and fractional part: $\lfloor n x\rfloor=\lfloor n\lfloor x\rfloor+n\{x\}\rfloor=n\lfloor x\rfloor+\lfloor n\{x\}\rfloor$. Thus for the two to be equal, $\lfloor n\{x\}\rfloor=0$ so $0 \leq n\{x\}<1$, so $\{x\}<1 / n$.
6. To round up, take $\left\lfloor x+\frac{1}{2}\right\rfloor$. We see this works by splitting the inside into a floor and a fractional part; if $\{x\}<1 / 2$, adding $1 / 2$ doesn't change the floor, but if $\{x\} \geq 1 / 2$, adding $1 / 2$ increases the floor by 1. A similar argument gives $\left\lceil x-\frac{1}{2}\right\rceil$ for rounding down.
7. $\frac{2 x+1}{2}=x+\frac{1}{2}$, so the first term rounds looks like our rounding formula, except the result is always one too high except when $x+1 / 2$ is an integer, in which case it correcly rounds up. Now notice that $\lceil\alpha\rceil-\lfloor\alpha\rfloor$ is 0 if α is an integer and 1 otherwise, so the next two terms subtract 1 if $\frac{2 x+1}{4}=\frac{x+1 / 2}{2}$ is not an integer. Thus the other terms correct the first term to the correctly rounded value when $x+1 / 2$ is not an integer. When $x+1 / 2$ is an integer, the other terms leave the first term alone if it's an even one, but subtract one if it's odd. Thus the formula always rounds x to the nearest integer, rounding halves up or down when $x+1 / 2$ is even or odd.
8. Let $k=\left\lceil\frac{n}{m}\right\rceil$. We have $k-1<\frac{n}{m} \leq k$. Since $\frac{m-1}{m}<1, \frac{n+m-1}{m}<k+1$. Since n, m are integers, and $\frac{n}{m}>k-1$, we know that $\frac{n}{m} \geq k-1+\frac{1}{m}$, so $\frac{n+m-1}{m}>k$. Thus $k=\left\lfloor\frac{n+m-1}{m}\right\rfloor$.
9. First note that if α and β are integers, the answer in both cases is $\beta-\alpha$. Let n be an integer in $[\alpha, \beta)$; by problem 3 we have that $\lceil\alpha\rceil \leq n<\lceil\beta\rceil$, so the number of integers in the interval is $\lceil\beta\rceil-\lceil\alpha\rceil$. Similarly, $n \in(\alpha, \beta]$ implies $\lfloor\alpha\rfloor<n \leq\lfloor\beta\rfloor$, giving $\lfloor\beta\rfloor-\lfloor\alpha\rfloor$.
10. Since α is irrational, we know $0<\{m \alpha\}<1$, and also $n / \alpha<1$. Plugging in $\lfloor m \alpha\rfloor=m \alpha-\{m \alpha\}$, we obtain $\lfloor m \alpha n / \alpha-\{m \alpha\} n / \alpha\rfloor=\lfloor m n-\{m \alpha\} n / \alpha\rfloor=m n-1$.
11. If $\lfloor x\rfloor=x$, we are done; otherwise, $\lfloor x\rfloor<x$. Thus $f(\lfloor x\rfloor)<f(x)$ since f is increasing, and so $\lfloor f(\lfloor x\rfloor)\rfloor \leq\lfloor f(x)\rfloor$. If $\lfloor f(\lfloor x\rfloor)\rfloor<\lfloor f(x)\rfloor$, since f is continuous there must be a number y such that $\lfloor x\rfloor \leq y<x$ and $f(y)=\lfloor f(x)\rfloor$. By the special property of f, this means y is an integer, but there can be no integer between x and its floor! Thus we must have $\lfloor f(\lfloor x\rfloor)\rfloor=\lfloor f(x)\rfloor$. Similarly, for decreasing $f,\lfloor f(x)\rfloor=\lfloor f(\lceil x\rceil)\rfloor$.
12. (Proof by contrapositive) Suppose $\alpha \neq \beta$, and assume without loss of generality that $\alpha<\beta$. Then there must be a positive integer m such that $m(\beta-\alpha) \geq 1$. Thus $m \beta-m \alpha \geq 1$ so $\lfloor m \beta\rfloor>\lfloor m \alpha\rfloor$, so the $m^{t h}$ elements of the spectra are different.
13. Suppose n is a winner; let $k=\lfloor\sqrt[3]{n}\rfloor$. Then $k^{3} \leq n<(k+1)^{3}$ and $n=k m$ for some m. Note that N^{3} is a winner; let's assume $n<N^{3}$, so that $1 \leq k<N$. Now substituting $k m$ for $n, k^{3} \leq k m<(k+1)^{3}$ so $k^{2} \leq m<(k+1)^{3} / m$. Using our formula for the number of integers in a half-open interval,
there are $\left\lceil(k+1)^{3} / k\right\rceil-\left\lceil k^{2}\right\rceil=\left\lceil k^{2}+3 k+3+1 / k\right\rceil-k^{2}=3 k+4$ of these. We then simply sum this for the possible values of k (it's an arithmetic series), and add back in the $n=N^{3}$ case to get $1+4(N-1)+\frac{3}{2}(N-1) N=\frac{1}{2}\left(3 N^{2}+5 N-6\right)$.
14. A proof by induction is quickest (though not the most general or elegant). The statement is true for $n=0$, and starting from n and moving up to $n+1$:

$$
\begin{aligned}
\frac{1}{6} n(n+1)(2 n+1)+(n+1)^{2} & =(n+1)\left(\frac{n^{2}}{3}+\frac{n}{6}+n+1\right) \\
& =\frac{1}{6}(n+1)\left(2 n^{2}+7 n+6\right) \\
& =\frac{1}{6}(n+1)(n+2)(2 n+3)
\end{aligned}
$$

15. Note that the terms for $a^{2} \leq k<n$ are all equal to a, so they contribute $\left(n-a^{2}\right) a$ to the sum. We now consider the rest of the sum, $0 \leq k<a^{2}$. Let $m=\lfloor\sqrt{k}\rfloor$; then $m \leq \sqrt{k}<m+1$ so $m^{2} \leq k<(m+1)^{2} \leq a^{2}$. We sum over k first instead of m; there are $(m+1)^{2}-m^{2}$ possible values of k, so our new sum is:

$$
\sum_{m=0}^{a-1} m\left((m+1)^{2}-m^{2}=\sum_{m=0}^{a-1} m(2 m+1)=2 \frac{1}{6}(a-1) a(2 a-1)+\frac{1}{2} a(a-1)\right.
$$

Expanding, we have $\frac{2 a^{3}}{3}-\frac{a^{2}}{2}-\frac{a}{6}$; adding in the $k \geq a^{2}$ terms, we obtain the desired result.
16. There are $2 n-1$ each of horizontal lines vertical lines between cells of the grid, and the circle crosses each one twice. Since r^{2} is not an integer, the circle cannot pass through the corner of any cell, by the Pythagorean theorem. Thus the circle passes through a cell for each time it crosses a line, giving $4(2 n-1)=8 n-4=8 r$ cells. $f(n, k)=4\left\lfloor r^{2}-k^{2}\right\rfloor:$ consider $f(n, k) / 4$; placing the x, y axes along the grid with origin at the center we can easily see from the equation of a circle that this is the number of cells above $x=k$ within the circle.

