Power Test 2007 Rice Math Tournament February 24, 2007

Definitions:

- Floor: $\lfloor x \rfloor$ is the greatest integer less than or equal to x.
- Ceiling: [x] is the least integer greater than or equal to x.
- Fractional part: $\{x\} = x \lfloor x \rfloor$.
- Intervals:
 - Open: $(\alpha, \beta) = \{\alpha < x < \beta\}$
 - Closed: $[\alpha, \beta] = \{\alpha \le x \le \beta\}$
 - Half-open: $[\alpha, \beta) = \{\alpha \le x < \beta\}$ and $(\alpha, \beta] = \{\alpha < x \le \beta\}$ (called half-closed by pessimists)

In all problems, assume that x, y, α, β are real and m, n are integers. (If you define new variables in your proofs please try to keep to this convention!) Note that for i < j you may use the result of problem i for problem j even if you have not solved it.

- 1. Show that $\lfloor x \rfloor = n$ if and only if $n \le x < n+1$ and if and only if $x 1 < n \le x$. Write similar statements for ceilings (you needn't prove them separately).
- 2. Show that $\lfloor -x \rfloor = -\lceil x \rceil$.
- 3. Show that x < n if and only if $\lfloor x \rfloor < n$. Write similar statements for $n < x, x \le n$, and $n \le x$ (you needn't prove them separately).
- 4. Show that $\lfloor n + x \rfloor = n + \lfloor x \rfloor$, and write a similar statement for $\lceil n + x \rceil$ (again, you needn't prove it separately).
- 5. Determine, with proof, under what conditions $\lfloor nx \rfloor = n \lfloor x \rfloor$.
- 6. How can we round, that is, find the nearest integer to x? We usually round up ties (when x is halfway between integers), so give two formulas, one which rounds ties up and one which rounds them down.
- 7. Show that $\left\lceil \frac{2x+1}{2} \right\rceil + \left\lfloor \frac{2x+1}{4} \right\rfloor \left\lceil \frac{2x+1}{4} \right\rceil$ is either $\lfloor x \rfloor$ or $\lceil x \rceil$, and when each is true.
- 8. Show that $\left\lceil \frac{n}{m} \right\rceil = \left\lfloor \frac{n+m-1}{m} \right\rfloor$ when m > 0.
- 9. Find, with proof, forumulas for the number of integers contained in the half-open intervals $[\alpha, \beta]$ and $(\alpha, \beta]$, assuming $\alpha \leq \beta$.
- 10. Show that $||m\alpha|n/\alpha| = mn 1$ where m, n > 0 and $\alpha > n$ is irrational.
- 11. Suppose f(x) is a continuous and increasing function such that if f(x) is an integer, x is an integer. Show that $\lfloor f(\lfloor x \rfloor) \rfloor = \lfloor f(x) \rfloor$. What is a similar statement $\lfloor f(x) \rfloor = ?$ if f is decreasing instead of increasing? (The relevant property of continuous functions is that if $f(x_1) = y_1$ and $f(x_2) = y_2$, then f passes through all y-values between y_1 and y_2 at some point as x goes from x_1 to x_2 .)
- 12. The spectrum of a real number x is the sequence of integers Spec $(x) = \{ \lfloor x \rfloor, \lfloor 2x \rfloor, \lfloor 3x \rfloor, \ldots \}$. Show that spectra are unique, i.e. that Spec $(\alpha) =$ Spec (β) if and only if $\alpha = \beta$.
- 13. A casino has a roulette wheel with N^3 slots, numbered 1 to N^3 . If the number *n* that comes up is divisible by the floor of its cube root $(\lfloor \sqrt[3]{n} \rfloor | n)$, it's a winner. Determine with proof the number of winners.

- 14. Show that $\sum_{j=0}^{n} j^2 = \frac{1}{6}n(n+1)(2n+1)$
- 15. Show that, if $a = \lfloor \sqrt{n} \rfloor$, $\sum_{k=0}^{n-1} \lfloor \sqrt{k} \rfloor = na \frac{1}{3}a^3 \frac{1}{2}a^2 \frac{1}{6}a$.
- 16. A circle, 2r = 2n 1 units in diameter, is drawn centered at the center of a $2n \times 2n$ square grid. Show that the circle passes through 8r cells of the grid, determine an f(n, k) such that $\sum_{k=1}^{n-1} f(n, k)$ is the number of cells entirely