Power Test
 2007 Rice Math Tournament
 February 24, 2007

Definitions:

- Floor: $\lfloor x\rfloor$ is the greatest integer less than or equal to x.
- Ceiling: $\lceil x\rceil$ is the least integer greater than or equal to x.
- Fractional part: $\{x\}=x-\lfloor x\rfloor$.
- Intervals:
- Open: $(\alpha, \beta)=\{\alpha<x<\beta\}$
- Closed: $[\alpha, \beta]=\{\alpha \leq x \leq \beta\}$
- Half-open: $[\alpha, \beta)=\{\alpha \leq x<\beta\}$ and $(\alpha, \beta]=\{\alpha<x \leq \beta\}$ (called half-closed by pessimists)

In all problems, assume that x, y, α, β are real and m, n are integers. (If you define new variables in your proofs please try to keep to this convention!) Note that for $i<j$ you may use the result of problem i for problem j even if you have not solved it.

1. Show that $\lfloor x\rfloor=n$ if and only if $n \leq x<n+1$ and if and only if $x-1<n \leq x$. Write similar statements for ceilings (you needn't prove them separately).
2. Show that $\lfloor-x\rfloor=-\lceil x\rceil$.
3. Show that $x<n$ if and only if $\lfloor x\rfloor<n$. Write similar statements for $n<x, x \leq n$, and $n \leq x$ (you needn't prove them separately).
4. Show that $\lfloor n+x\rfloor=n+\lfloor x\rfloor$, and write a similar statement for $\lceil n+x\rceil$ (again, you needn't prove it separately).
5. Determine, with proof, under what conditions $\lfloor n x\rfloor=n\lfloor x\rfloor$.
6. How can we round, that is, find the nearest integer to x ? We usually round up ties (when x is halfway between integers), so give two formulas, one which rounds ties up and one which rounds them down.
7. Show that $\left\lceil\frac{2 x+1}{2}\right\rceil+\left\lfloor\frac{2 x+1}{4}\right\rfloor-\left\lceil\frac{2 x+1}{4}\right\rceil$ is either $\lfloor x\rfloor$ or $\lceil x\rceil$, and when each is true.
8. Show that $\left\lceil\frac{n}{m}\right\rceil=\left\lfloor\frac{n+m-1}{m}\right\rfloor$ when $m>0$.
9. Find, with proof, forumulas for the number of integers contained in the half-open intervals $[\alpha, \beta)$ and $(\alpha, \beta]$, assuming $\alpha \leq \beta$.
10. Show that $\lfloor\lfloor m\rfloor n / \alpha\rfloor=m n-1$ where $m, n>0$ and $\alpha>n$ is irrational.
11. Suppose $f(x)$ is a continuous and increasing function such that if $f(x)$ is an integer, x is an integer. Show that $\lfloor f(\lfloor x\rfloor)\rfloor=\lfloor f(x)\rfloor$. What is a similar statement $\lfloor f(x)\rfloor=$? if f is decreasing instead of increasing? (The relevant property of continuous functions is that if $f\left(x_{1}\right)=y_{1}$ and $f\left(x_{2}\right)=y_{2}$, then f passes through all y-values between y_{1} and y_{2} at some point as x goes from x_{1} to x_{2}.)
12. The spectrum of a real number x is the sequence of integers $\operatorname{Spec}(x)=\{\lfloor x\rfloor,\lfloor 2 x\rfloor,\lfloor 3 x\rfloor, \ldots\}$. Show that spectra are unique, i.e. that $\operatorname{Spec}(\alpha)=\operatorname{Spec}(\beta)$ if and only if $\alpha=\beta$.
13. A casino has a roulette wheel with N^{3} slots, numbered 1 to N^{3}. If the number n that comes up is divisible by the floor of its cube root $(\lfloor\sqrt[3]{n}\rfloor \mid n)$, it's a winner. Determine with proof the number of winners.
14. Show that $\sum_{j=0}^{n} j^{2}=\frac{1}{6} n(n+1)(2 n+1)$
15. Show that, if $a=\lfloor\sqrt{n}\rfloor, \sum_{k=0}^{n-1}\lfloor\sqrt{k}\rfloor=n a-\frac{1}{3} a^{3}-\frac{1}{2} a^{2}-\frac{1}{6} a$.
16. A circle, $2 r=2 n-1$ units in diameter, is drawn centered at the center of a $2 n \times 2 n$ square grid. Show that the circle passes through $8 r$ cells of the grid, determine an $f(n, k)$ such that $\sum_{k=1}^{n-1} f(n, k)$ is the number of cells entirely
