Geometry Solutions 2007 Rice Math Tournament February 24, 2007

1. Answer: $4 \sqrt{3}$

Let the side length be $s .3 s=\frac{\sqrt{3} s^{2}}{4} \Rightarrow 12 s=\sqrt{3} s^{2} \Rightarrow s=\frac{12}{\sqrt{3}}=4 \sqrt{3}$

2. Answer: $8 \sqrt{3}$

Since each side of the octahedron is a radius of a sphere, the surface area is the area of 8 equilateral triangles with side length $2 . \frac{2 \cdot \sqrt{3}}{2} \cdot 8=8 \sqrt{3}$.
3. Answer: $\frac{s}{2}$

Let A, B be the apexes of two pyramids over adjacent faces, and let O lie at the center of the cube. For the cumulation to form rhombuses instead of tetrahedrons, the hypotenuse of the right triangle $O A B$ must intersect the shared edge of the two faces at a point $P . O P$ is then an altitude, with length $s \sqrt{2} / 2$, and so $O A$ is s, with $s / 2$ lying inside the cube, leaving $h=s / 2$.

4. Answer: 12

Let M be the endpoint of the altitude on the hypotenuse. Since we are dealing with right triangles, $\triangle M A C \sim \triangle A B C$, so $A M=12 / 5$. Let N be the endpoint he reaches on side $\overline{A C} . \triangle M A C \sim \Delta N A M$, so $\frac{M N}{A M}=4 / 5$. This means that each altitude that he walks gets shorter by a factor of $4 / 5$. The total distance is thus $\frac{12}{5} /\left(1-\frac{4}{5}\right)=12$.
5. Answer: $\frac{s \sqrt{6}}{6}$

Let ABC be the vertices on one face of the octahedron, and O be the center of the octahedron (and the circle). Let M be the midpoint of $\overline{A B}$ and P be the center of $\triangle A B C$. Then $O M=\frac{s}{2}$, and $M P=\frac{1}{3} \cdot \frac{s \sqrt{3}}{2}$, and $\overline{O P} \perp \overline{M P}$. So $\overline{O P}=s \sqrt{\left(\frac{l}{2}\right)^{2}-\left(\frac{s \sqrt{3}}{2}\right)^{2}}=\frac{s}{\sqrt{6}}$.
6. Answer: $\frac{12 \sqrt{5}}{5}$

Extend $\overline{I R}$ and $\overline{C E}$ to point X. Clearly, $m \angle X=90$. Note that $\triangle X I E \sim \Delta X C I$. Since $(X C) /(X I)=$ $4 / 8=1 / 2$, we can use the Pythagorean Theorem to solve for $X C$ and $X I$ to get $X C=\frac{4}{\sqrt{5}}$ and $X I=\frac{8}{\sqrt{5}}$. Since $X C / X I=X I / X E, X E=16 \sqrt{5} / 5$, and $C E=X E-X C=\frac{12 \sqrt{5}}{5}$.
7. Answer: $\frac{\sqrt{2}}{3}$

The regions in which they do NOT overlap are the smaller tetrahedra of side length 1 positioned at 3 vertices of both larger tetrahedra. The volume of the overlap region is the volume of one tetrahedron of side length 2 , minus the volume of four tetrahedra of side length 1 .
In general, the volume of a tetrahedron of side length $\frac{s}{\sqrt{2}}$ can be found by noting that a cube consists of regular tetrahedron and 4 triangular pyramids (formed from a vertex of the cube and 3 adjacent vertices). The cube has side length s, so the volume of the tetrahedron is $s^{3}-4 \cdot \frac{\frac{s^{2}}{2} \cdot s}{3}=\frac{1}{3} s^{3}$, or $1 / 3$ the volume of a cube of side length s. So the volume of a tetrahedron of side length 1 is $\frac{1}{3} \cdot \frac{1}{\sqrt{8}} \cdot(1)^{3}=\frac{\sqrt{2}}{12}$. So the total volume of the region we are looking for is $\frac{\sqrt{2}}{12} \cdot 2^{3}-\frac{4 \sqrt{2}}{12}=\frac{\sqrt{2}}{3}$.
8. Answer: $\frac{5}{2}$

Suppose the medians intersect at P. If $\overline{B C}=x, \overline{B P}=\overline{C P}=\frac{x}{\sqrt{2}}$. By a well-known property of centroids, $\frac{M P}{M C}=\frac{1}{3}$, so $M P=\frac{x}{2 \sqrt{2}}$. Using the Pythagorean Theorem, we find that $M B=\frac{x \sqrt{5 / 2}}{2} \Rightarrow$ $A B=x \cdot \sqrt{\frac{5}{2}}$. So $\left(\frac{A B}{B C}\right)^{2}=\frac{5}{2}$.

9. Answer: $2 \sqrt{3}$

Stewart's Theorem states that $(P Q)^{2}(S R)+(Q R)^{2}(P S)=(Q S)^{2}(P R)+(P S)(P R)(S R)$. (This can be derived by applying the law of cosines to $\angle P S Q$ and $\angle R S Q$.) Plugging in and solving gives $Q R=5 / \sqrt{3}$, and applying the theorem again to triangle $Q S T$ gives $S T=2 \sqrt{3}$.
10. Answer: $\frac{d \sqrt{3}}{3}+\frac{d}{2 \pi}$

The car can drive the farthest (reaching Γ) by turning as sharply as possible for some distance then driving straight. Suppose it turns while driving a length s. Noting the correspondence between angle at the center of a circle and arclength, it has then reached the point $\left(\frac{d}{\pi}, 0\right)+\frac{d}{\pi}\left(-\cos \left(\frac{s \pi}{d}\right), \sin \left(\frac{s \pi}{d}\right)\right)$. It now has $d-s$ left to drive in the direction (since the tangent is perpendicular to the radius) $\left(\sin \left(\frac{s \pi}{d}\right), \cos \left(\frac{s \pi}{d}\right)\right)$. Adding up, we have a parametric equation for the boundary:

$$
\Gamma(s)=\left(\frac{d}{\pi}, 0\right)+\frac{d}{\pi}\left(-\cos \left(\frac{s \pi}{d}\right), \sin \left(\frac{s \pi}{d}\right)\right)+(d-s)\left(\sin \left(\frac{s \pi}{d}\right), \cos \left(\frac{s \pi}{d}\right)\right)
$$

Solving for s would be very difficult, but noting that one term has a π in the denominator and one doesn't, we can make the educated guess $s=\frac{d}{3}$; this indeed works.

