Calculus Solutions

1. Answer: $-\frac{1}{6}$

Use l'Hopital's rule:

$$
\lim _{x \rightarrow 0} \frac{-1+\cos x}{3 x^{2}+4 x^{3}}=\lim _{x \rightarrow 0} \frac{-\sin x}{6 x+12 x^{2}}=\lim _{x \rightarrow 0} \frac{-\cos x}{6+12 x}
$$

2. Answer: $\frac{\sqrt[3]{4}}{2}$

$$
\begin{aligned}
y^{\prime}=3 a^{2}+3 & =\frac{a^{3}+3 a+1}{a}=\frac{y}{x} \\
\frac{2 a^{3}-1}{a} & =0 \\
a^{3} & =\frac{1}{2}
\end{aligned}
$$

3. Answer: $\frac{\sqrt{5}-1}{2}$

The speed will cancel out so assume it is 1 . We then have:

$$
\begin{aligned}
\int_{\tau}^{t+1} \frac{1}{t} d t & =2 \int_{\tau+1}^{\tau+2} \frac{1}{t} d t \\
\ln \frac{\tau+1}{\tau} & =2 \ln \frac{\tau+2}{\tau+1} \\
\frac{\tau+1}{\tau} & =\left(\frac{\tau+2}{\tau+1}\right)^{2} \\
\tau & =\frac{-1 \pm \sqrt{5}}{2}
\end{aligned}
$$

4. Answer: $\frac{5}{2}$

For odd $n, I(n)=-\left.\frac{\cos (n x)}{n}\right|_{0} ^{\pi}=2 / n$, so $\sum_{n=0}^{\infty} I\left(5^{n}\right)=\sum_{n=0}^{\infty} 2 / 5^{n}=5 / 2$
5. Answer: 7

We have $f^{\prime}(x)=\int\left(\delta_{1}(x)+\delta_{2}(x)\right) d x=\Theta_{1}(x)+\Theta_{2}(x)+C$, and $f^{\prime}(0)=0$ so $C=0$. Integrating up to f is most easily accomplished graphically; the region under the curve from 0 to 5 is a 1×4 rectangle from $x=1$ to $x=5$ with a 1×3 rectangle from $x=2$ to $x=5$ on top.
6. Answer: $\frac{4}{\pi^{2}}$

Suppose A lies at polar coordinate $0<\theta<\pi / 2$. For the rectangle to lie within the circle, B must lie in the rectangle with vertices at A, A reflected over the x-axis, A reflected over the y-axis, and A reflected over both axes. Thus for this fixed A, the probability is $(2 \sin \theta)(2 \cos \theta) / \pi=2 \sin (2 \theta) / \pi$. The total probability is then $\frac{2}{\pi} \int_{0}^{\pi / 2} \frac{2}{\pi} \sin (2 \theta) d \theta$. (Integrating over the circle requires taking the absolute value of the expression for area, which then splits up into four sections identical to the one considered here.)
7. Answer: $\frac{4 \pi}{e^{2}}$

$$
V=\pi \int_{0}^{2}\left(\sqrt{2 x-x^{2}} e^{-x / 2}\right)^{2} d x=\pi \int_{0}^{2}\left(2 x-x^{2}\right) e^{-x} d x=\left.\pi x^{2} e^{-x}\right|_{0} ^{2}
$$

8. Answer: 12 cups of coffee

The number of theorems proven is $(s+\ln c)(24-s-c / 12)$. Differentiating with respect to s gives $24-\frac{c}{12}-2 s-\ln c=0$, so $s=12-\frac{c}{24}-\frac{1}{2} \ln c$. This is a maximum in s since the second derivative is -2 . Plugging this back in and simplifying gives $\left(12-\frac{c}{24}+\frac{\ln c}{2}\right)^{2}=f(c)^{2}$ theorems proven. This differentiates to $2 f^{\prime}(c) f(c)$, so the derivative will be zero when either $f(c)$ or $f^{\prime}(c)$ is zero. $f(c)=0$ is difficult to solve, involving both a logarithm and a binomial, but $f^{\prime}(c)=\frac{1}{2 c}-\frac{1}{24}$, so $c=12$ is a solution. It is a maximum in c since the second derivative is $2 f^{\prime}(c)^{2}+2 f(c) f^{\prime \prime}(c)$, with $f^{\prime \prime}(12)<0$, $f(12)>0$, and $f^{\prime}(12)=0$.
9. Answer: $\ln 2$

$$
\sum_{k=n+1}^{2 n} \frac{1}{k}=\frac{n}{n} \sum_{k=1}^{n} \frac{1}{k+n}=\sum_{k=1}^{n} \frac{1}{n} \frac{1}{1+\frac{k}{n}}
$$

This is a Riemann sum: $\int_{1}^{2} \frac{1}{x} d x=\ln 2$.
10. Answer: $10 \boldsymbol{x}^{19}$

Note that $\int f(x) d x=\frac{1}{2\left(1-x^{2}\right)}=\frac{1}{4}\left(\frac{1}{1+x}+\frac{1}{1-x}\right)$. These are geometric sums, so we have

$$
\begin{aligned}
\int f(x) d x & =\frac{1}{4}\left(\sum_{k=0}^{\infty} x^{k}+\sum_{k=0}^{\infty}(-x)^{k}\right) \\
& =\frac{1}{2} \sum_{k=0}^{\infty} x^{2 k} \\
f(x) & =\sum_{k=0}^{\infty} k x^{2 k-1}
\end{aligned}
$$

