Algebra Solutions

2007 Rice Math Tournament
February 24, 2007

1. Answer: $4^{1 / 9},-1$
$f\left(x^{1 / 9}\right)=(x-4)(x+1)$ so $f=0$ means $x=4$ or $x=-1$, so $f\left(4^{1 / 9}\right)=f(-1)=0$.
2. Answer: $\frac{1}{4}$

Since $\left(x-x_{1}\right)\left(x-4 x_{1}\right)=x^{2}-5 x_{1} x+4 x_{1}^{2}$, we know $3=2\left(4 x_{1}^{2}+5 x_{1}\right)$ so $x_{1}=\frac{1}{4}$. (The other root is negative.)
3. Answer: $\mathbf{- 3 7}$

Simply note that $(a+b)(a+c)(b+c)=(a b+a c+b c)(a+b+c)-a b c=-6 \cdot 7+5=-37$.
4. Answer: 1339

Let k be a nonnegative integer. Let $f(x)=\lfloor x\rfloor+\lfloor 2 x\rfloor+\lfloor 3 x\rfloor$. If $k \leq x<k+\frac{1}{3}$, then $f(x)=6 k$. If $k+\frac{1}{3} \leq x<k+\frac{1}{2}$, then $f(x)=6 k+1$. If $k+\frac{1}{2} \leq x<k+\frac{2}{3}$, then $f(x)=6 k+2$. If $k+\frac{2}{3} \leq x<k+1$, then $f(x)=6 k+3$. There is therefore only a solution if n is $0,1,2$, or $3 \bmod 6$; there are $2004 \cdot \frac{4}{6}+3$ of these.
5. Answer: $\frac{5}{144}$

There are clearly five correct guesses; counting the number of possible guesses is the difficult part. A possible guess q is ± 1 times a divisor of 90 divided by a divisor of 400 . We count these by extending the idea of prime factorization: from the factorizations of 90 and 400: we have $q=2^{i} 3^{j} 5^{k}$ where $-4 \leq i \leq 1,0 \leq j \leq 2$, and $-2 \leq k \leq 1$. There are thus $6 \cdot 3 \cdot 4=72$ possible fractions making 144 possible guesses.
6. Answer: 881

We can factor $4 x^{4}+y^{4}=\left(4 x^{4}+4 x^{2} y^{2}+y^{4}\right)-4 x^{2} y^{2}=\left(2 x^{2}+y^{2}\right)^{2}-(2 x y)^{2}=\left(2 x^{2}+2 x y+y^{2}\right)\left(2 x^{2}-\right.$ $\left.2 x y+y^{2}\right)$. Since $4^{9}+9^{4}=4(16)^{4}+9^{4}$, we plug in to obtain the factoring $881 \cdot 305$. Quick checking (up to 29) shows 881 to be prime.
7. Answer: 6

The expression is 6 times the arithmetic mean of the terms, which is is always greater than or equal to the geometric mean, which is $x y \cdot x \cdot y \cdot \frac{1}{x} \cdot \frac{1}{y} \cdot \frac{1}{x y}=1$. The minimum is achieved when all terms are equal, i.e. $x=y=1$.
8. Answer: 4
$(r+s+t)^{3}-3(r+s+t)\left(r^{2}+s^{2}+t^{2}\right)+2\left(r^{3}+s^{3}+t^{3}\right)=6 r s t$ - just plug in!
9. Answer: $\sqrt{5}$

Note that the equations reduce by substitution to $a=b+\frac{1}{a+1 / a}$ and $b=a-\frac{1}{b+1 / b}$. Solving the second for a, substituting into the first, and reducing yields $b^{4}+b^{2}-1=0$; solving this as a quadratic in b^{2} yields only one positive value for $b^{2}=\frac{\sqrt{5}-1}{2}$. Plugging back in and solving for a gives $a^{2}=\frac{\sqrt{5}+1}{2}$.
10. Answer: - 2015028

Note that $(x+1)^{2}-x^{2}=2 x+1$ so:

$$
\begin{aligned}
\sum_{k=1}^{2007}(-1)^{k} k^{2} & =-2007^{2}+\sum_{k=1}^{1003}(2(2 k-1)+1) \\
& =-2007^{2}+4 \frac{1003 \cdot 1003}{2}+1003 \\
& =-2007^{2}+1003 \cdot 2007=2007(1003-2007)
\end{aligned}
$$

