Team Solutions

2006 Rice Math Tournament
February 25, 2006

1. Answer: 29

$140 \pi=$ volume of cone M - volume of cone $N=\frac{1}{3} \cdot x^{2} \cdot 20 \pi-\frac{1}{3} \cdot x \cdot(20)^{2} \pi=\frac{20 x^{2} \pi}{3}-\frac{400 x \pi}{3}$ $20 x^{2}-400 x=420 \Rightarrow x^{2}-20 x-21=0 \Rightarrow(x-21)(x+1)=0 \Rightarrow x=21,-1$
But x must be positive, so $x=21$.
$\overline{B C}=\sqrt{\overline{A B}^{2}+\overline{A C}^{2}}=\sqrt{20^{2}+21^{2}}=29$
2. Answer: - 2

Let the first element be x, and the second, y. Writing out each element in terms of x and y gives $\{x, y, 2 x+y, 5 x+3 y, 13 x+8 y, \ldots\}$, which is apparently the fibonacci sequence with every other element as the coefficient of x or y. So the 6 th element is $34 x+21 y$ and the seventh, $89 x+55 y$. Solving $89 \cdot 2+55 \cdot y=68$ gives $y=-2$.

3. Answer: 17.5

Form $\triangle A B C$, and set $a=\overline{B C}, b=\overline{A C}$, and $c=\overline{A B}$. Let 5 be the altitude from $A, 7$ be the altitude from B, and call the third altitude h.
$5 a=7 b=h \cdot c$, so $\frac{a}{c}<\frac{h}{5}$ and $\frac{b}{c}=\frac{h}{7}$.
Since $a<b+c$,

$$
\begin{gathered}
\frac{a}{c}=\frac{b}{c}+1 \Rightarrow \frac{h}{5}<\frac{h}{7}+1 \\
h \cdot\left(\frac{1}{5}-\frac{1}{7}\right)<1
\end{gathered}
$$

so $h<\frac{7.5}{7-5}=17.5$
4. Answer: $a^{6}-6 a^{4} b+9 a^{2} b^{2}-2 b^{3}$

Note: $\left(x^{n-1}+y^{n-1}\right)(x+y)=x^{n}+y^{n}+y x^{n-1}+x y^{n-1}=x^{n}+y^{n}+x y\left(x^{n-2}+y^{n-2}\right)$.
Thus, let $f(n)=x^{n}+y^{n}$. We see $f(n)=a f(a-1)-b f(n-2)$.
$x^{0}+y^{0}=2$, so $f(0)=2$
$x^{1}+y^{1}=x+y=a$, so $f(1)=a$
$f(2)=a^{2}-2 b$
$f(3)=a^{3}-3 a b$
$f(4)=a^{4}-3 a^{2} b-a^{2} b+2 b^{2}=a^{4}-4 a^{2} b+2 b^{2}$
$f(5)=a^{5}-4 a^{3} b+2 a b^{2}-a^{3} b+3 a b^{2}=a^{6}-6 a^{3} b+5 a b^{2}$
$f(6)=a^{6}-5 a^{4} b+5 a^{2} b^{2}-a^{4} b+4 a^{2} b^{2}-2 b^{3}=a^{6}-6 a^{4} b+9 a^{2} b^{2}-2 b^{3}$

5. Answer: 1

$$
\begin{aligned}
\sin (\arccos (\tan (\arcsin x))) & =x \\
\sin \left(\arccos \left(\frac{x}{\sqrt{1-x^{2}}}\right)\right) & =x \\
\sqrt{1-\left(\frac{x}{\sqrt{1-x^{2}}}\right)^{2}} & =x \\
\sqrt{\frac{1-2 x^{2}}{1-x^{2}}} & =x \\
1-2 x^{2} & =x^{2}-x^{4} \\
x^{4}-3 x^{2}+1 & =0
\end{aligned}
$$

Solving and restricting x to positive numbers: $x^{2}=\frac{3 \pm \sqrt{9-4}}{2}$
$x=\sqrt{\frac{3+\sqrt{5}}{2}}$ or $x=\sqrt{\frac{3-\sqrt{5}}{2}}$. Multiplying these together, the answer is $\sqrt{\frac{9-5}{4}}$.
6. Answer: 8024

Write the expression as $x^{4}+x^{2}+1$ where $x=2^{n}$. This is equivalent to $\left(x^{2}+1\right)^{2}-x^{2}$ (by adding and subtracting $\left.x^{2}\right)$. This expression can be written as $\left(x^{2}+x+1\right)\left(x^{2}-x+1\right)=\frac{x^{3}-1}{x-1} \cdot \frac{x^{3}+1}{x+1}=\frac{x^{6}-1}{x^{2}-1}=\frac{2^{6 n}-1}{2^{2 n}-1}$. Hence $p(n)=6 n$ and $q(n)=2 n$. It's not hard to see that this is the only solution by considering the limit of each expression as n approaches infinity. The highest-order terms predominate: $2^{4 n}$ and $2^{q(n)(p(n) / q(n)-1)}$. This implies that p and q are linear functions. Exact functions can be determined by evaluating the expressions at $n=1$ and $n=2$ and solving for two variables. The answer is 8,024 .
7. Answer: $\frac{1}{12}$

This is a geometric probability problem. The set of 3-tuples above fits an equilateral triangle on the plane $x+y+z=3000$. We're going to look at the sections of this triangle where $x \geq 2500$. This is a triangle with vertices $(2500,500,0)$, $(2500,0,500)$, and $(3000,0,0)$. This is an equilateral triangle with length $500 \sqrt{2}$. The area of this triangle is $\frac{\text { side }^{2} \sqrt{3}}{4}=\frac{(500 \sqrt{2})^{2} \sqrt{3}}{4}=125000 \sqrt{3}$. Since x, y, or z can be larger than 2500 , we need to multiply this by 3 to get the total area that works: $125000 \sqrt{3} \cdot 3=375000 \sqrt{3}$. The total possible area is the whole triangle of side length $3000 \sqrt{2}$: $\frac{\text { side }^{2} \sqrt{3}}{4}=\frac{(3000 \sqrt{2})^{2} \sqrt{3}}{4}=4500000 \sqrt{3}$. So the overall probability is $\frac{375000 \sqrt{3}}{4500000 \sqrt{3}}=\frac{1}{12}$.

8. Answer: 2

Let $S_{n}=\sum_{k=n^{2}}^{(n+1)^{2}} \frac{1}{\sqrt{k}}$

$$
\begin{aligned}
& \sum_{k=n^{2}}^{(n+1)^{2}} \frac{1}{\sqrt{(n+1)^{2}}}<S_{n}<\sum_{k=n^{2}}^{(n+1)^{2}} \frac{1}{\sqrt{n^{2}}} \\
& \left((n+1)^{2}-n^{2}+1\right) \frac{1}{n+1}<S_{n}<\left((n+1)^{2}-n^{2}+1\right) \frac{1}{n} \\
& \frac{2(n+1)}{n+1}<S_{n}<\frac{2(n+1)}{n} \\
& 2<S_{n}<2+\frac{1}{n}
\end{aligned}
$$

Thus $\lim _{n \rightarrow \infty} \sum_{k=n^{2}}^{(n+1)^{2}} \frac{1}{\sqrt{k}}=2$
9. Answer: $\frac{5}{2}$

Suppose the medians intersect at P. If $B C=x, B P=C P=\frac{x}{\sqrt{2}}$. By a well-known property of centroids, $\frac{M P}{M C}=\frac{1}{3}$, so $M P=\frac{x}{2 \sqrt{2}}$. Using the Pythagorean Theorem, we find that $M B=\frac{x \sqrt{\frac{5}{2}}}{2}$ and so $A B=x \sqrt{\frac{5}{2}}$. So $\left(\frac{A B}{B C}\right)^{2}=\frac{5}{2}$.

10. Answer: 638

Notice that $n^{3}+8$ is divisible by $n+2$. Therefore, $m-8$ must be divisible by $n+2$ for the expression to be an integer. If f is a factor of $m-8, n=f-2$ is a corresponding suitable n; we then need $f \geq 3$ to make $n>0$. Thus $m-8$ must have twelve each odd and even factors including 1 and 2 . To make the number of odd and even factors equal in order to minimize m, the power of 2 in the prime factorization of $m-8$ must be 1. Suppose the prime factorization of $m-8$ is then $2^{1} \cdot 3^{a} \cdot 5^{b} \cdot 7^{c} \cdot 11^{d}$ (larger prime factors will clearly not minimize m). Then $(a+1)(b+1)(c+1)(d+1) \geq 12$. To minimize $m, a \geq b \geq c \geq d$. We then examine values of $\frac{m-8}{2}$ to determine the best $(a, b, c, d) .3 \cdot 5 \cdot 7 \cdot 11=1155$, $3^{2} \cdot 5 \cdot 7=315$. Moving any more factors into smaller primes involves multiplying by $\frac{3^{2}}{7}$ or $\frac{3^{2}}{5}$ (or subsequent larger powers of 3), which increases the value. Therefore $m-8=2 \cdot 3^{2} \cdot 5 \cdot 7$, so $m=638$.

11. Answer: 64

Using the first condition with $j=1003$ we get $c_{i}=2(1003-i) c_{2006-i}$. Replace the coefficients of P in this manner and notice that $x^{2006} \frac{P\left(\frac{2}{x}\right)}{2006}=P(x)$. Therefore if r is a solution of $P(x)=0$ then $P(2 / r)=0$. Then:

$$
\sum_{i \neq j, i=1, j=1}^{2006} \frac{r_{i}}{r_{j}}=\sum_{i=1}^{2006} r_{i} \sum_{i=1}^{2006} \frac{1}{r_{i}}-2006=\frac{1}{2}\left(\sum_{i=1}^{2006} r_{i}\right)^{2}-2006=42
$$

Solving for the desired sum gives 64 .

12. Answer: 17

$\sum_{i=1}^{k}\left(180-\frac{360}{n_{i}}\right)=0$, so $k / 2-1=\sum_{i=1}^{k} \frac{1}{n_{i}}$. Clearly, $3 \leq k \leq 6$, since the interior angles are less than 180°, and six equilateral triangles maximize k. For each k, bounds can be established on the smallest or largest n_{i}. From then, we can fix all but two of the n_{i}, solve algebraically, then use reasonable guesswork to find all integer solutions. For $k=3$, fix n_{1} at $3,4,5$, or 6 and then solve $\frac{3}{2}-1=\frac{1}{n_{1}}+\frac{1}{n_{2}}+\frac{1}{n_{3}}$. This yields 10 solutions. For $k=4, n_{4}=3$ or 4 ; there are 4 solutions. For $k=5, n_{5}=n_{4}=n_{3}=3$, giving two solutions. Finally there is of course only one solution for $k=6.10+4+2+1=17$

13. Answer: $\frac{2 \sqrt{7}}{7}$

It is clear from drawing the graph that we want to find the cosine of the smallest angle $\theta\left(0<\theta<\frac{\pi}{2}\right)$ such that a ray leaving the origin at angle θ will hit the graph of the hyperbola in the first quadrant. Since $\cos \theta$ is a decreasing function on this interval, we want the largest possible value of $\cos \theta$.
We begin by writing the hyperbola in polar coordinates: $r^{2} \sin ^{2} \theta=r^{2} \cos ^{2} \theta-r \cos \theta+1$.
Using $\sin ^{2} \theta=1-\cos ^{2} \theta$ and collecting like terms, we get: $\left(2 \cos ^{2} \theta-1\right) r^{2}-(\cos \theta) r+1=0$.
Now we can use the quadratic formula to solve for r :

$$
r=\frac{\cos \theta \pm \sqrt{\cos ^{2} \theta-4\left(2 \cos ^{2} \theta-1\right)}}{4 \cos ^{2} \theta-2}
$$

If there are any solutions for r, the quantity under the square root must be nonnegative:

$$
\begin{gathered}
\cos ^{2} \theta \geq 8 \cos ^{2} \theta-4 \\
7 \cos ^{2} \theta \leq 4 \\
\cos \theta \leq \frac{2 \sqrt{7}}{7}
\end{gathered}
$$

So the angle we are looking for has

$$
\cos \theta=\frac{2 \sqrt{7}}{7}
$$

14. Answer: 292

First we find the largest power of an integer d that divides k !. Notice that $\left\lfloor\frac{k}{d}\right\rfloor$ of the integers $1,2, \ldots, k$ are divisible by $d,\left\lfloor\frac{k}{d^{2}}\right\rfloor$ are divisible by d^{2}, and so on. The largest power we are looking for is then $\left\lfloor\frac{k}{d}\right\rfloor+\left\lfloor\frac{k}{d^{2}}\right\rfloor+\left\lfloor\frac{k}{d^{3}}\right\rfloor+\ldots$. Now let $m=2006-n$, so that $\binom{2006}{n}=\frac{2006!}{n!m!}$; the largest power of 7 divisor is then $\left(\left\lfloor\frac{2006}{7}\right\rfloor-\left\lfloor\frac{n}{7}\right\rfloor-\left\lfloor\frac{m}{7}\right\rfloor\right)+\left(\left\lfloor\frac{2006}{7^{2}}\right\rfloor-\left\lfloor\frac{n}{7^{2}}\right\rfloor-\left\lfloor\frac{m}{7^{2}}\right\rfloor\right)+\ldots$ Note that if $\frac{n}{d}=\left\lfloor\frac{n}{d}\right\rfloor+n^{\prime}$ and $\frac{m}{d}=\left\lfloor\frac{m}{d}\right\rfloor+m^{\prime}$, then $\frac{2006}{d}=\frac{n+m}{d}$ leaves a remainder of $r=n^{\prime}+m^{\prime}$ or $n^{\prime}+m^{\prime}-d$, whichever satisfies $0 \leq r<d$. Therefore $\left\lfloor\frac{2006}{d}\right\rfloor-\left\lfloor\frac{m}{d}\right\rfloor-\left\lfloor\frac{n}{d}\right\rfloor=0$ or 1 . To make this 1 in order to get large divisors of $\binom{2006}{n}$, we need $m^{\prime}, n^{\prime}>r$. We therefore find the remainders when 2006 is divided by $7,7^{2}$, and $7^{3}: 4,46$, and 291. Therefore n must leave a remainder of at least 292 when divided by 343 , so we try $n=292$, which has remainders of 5 and 47 when divided by 7 and 49 .
15. Answer: $\frac{12}{\pi^{2}}$

Write

$$
\prod_{p \text { prime }} \frac{p^{2}}{p^{2}-1} \prod_{c \text { composite }} \frac{c^{2}}{c^{2}-1}=\prod_{n=2}^{\infty} \frac{n^{2}}{n^{2}-1}=\prod_{n=2}^{\infty} \frac{n}{n-1} \frac{n}{n+1}
$$

which telescopes and evaluates to 2 . Meanwhile we can write

$$
\prod_{p \text { prime }} \frac{p^{2}}{p^{2}-1}=\prod_{p \text { prime }} \frac{1}{1-\frac{1}{p^{2}}}
$$

The latter is equivalently rewritten:

$$
\prod_{p \text { prime }} 1+\frac{1}{p^{2}}+\frac{1}{p^{4}}+\ldots=\prod_{p \text { prime }}\left(\sum_{n=0}^{\infty} \frac{1}{p^{2 n}}\right)
$$

When we distribute the infinite product over the infinite sum, we get a sum of terms. Each term is of the form $\frac{1}{m^{2}}$ for integer m. Each m appears exactly once, so the product is equal to $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$. Hence

$$
\prod_{c \text { composite }} \frac{c^{2}}{c^{2}-1}=\frac{2}{\frac{\pi^{2}}{6}}=\frac{12}{\pi^{2}}
$$

