## Team Test <br> 2006 Rice Math Tournament <br> February 25, 2006

1. Given $\triangle A B C$, where $A$ is at $(0,0), B$ is at $(20,0)$, and $C$ is on the positive $y$-axis. Cone $M$ is formed when $\triangle A B C$ is rotated about the $x$-axis, and cone $N$ is formed when $\triangle A B C$ is rotated about the $y$-axis. If the volume of cone $M$ minus the volume of cone $N$ is $140 \pi$, find the length of $\overline{B C}$.
2. In a given sequence $\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$, for terms $n \geq 3, S_{n}=\sum_{i=1}^{n-1} i \cdot S_{n-i}$. For example, if the first two elements are 2 and 3 , respectively, the third entry would be $1 \cdot 3+2 \cdot 2=7$, and the fourth would be $1 \cdot 7+2 \cdot 3+3 \cdot 2=19$, and so on . Given that a sequence of integers having this form starts with 2 , and the 7 th element is 68 , what is the second element?
3. A triangle has altitudes of lengths 5 and 7 . What is the maximum possible integer length of the third altitude? (We restricted the third altitude to integer lengths after the contest)
4. Let $x+y=a$ and $x y=b$. The expression $x^{6}+y^{6}$ can be written as a polynomial in terms of $a$ and $b$. What is this polynomial?
5. There exist two positive numbers $x$ such that $\sin (\arccos (\tan (\arcsin x)))=x$. Find the product of the two possible $x$.
6. The expression $16^{n}+4^{n}+1$ is equivalent to the expression $\left(2^{p(n)}-1\right) /\left(2^{q(n)}-1\right)$ for all positive integers $n>1$ where $p(n)$ and $q(n)$ are functions and $\frac{p(n)}{q(n)}$ is constant. Find $p(2006)-q(2006)$.
7. Let $S$ be the set of all 3 -tuples (a,b,c) that satisfy $a+b+c=3000$ and $a, b, c,>0$. If one of these 3 -tuples is chosen at random, what's the probability that $a, b$, or $c$ is greater than or equal to 2,500 ?
8. Evaluate: $\lim _{n \rightarrow \infty} \sum_{k=n^{2}}^{(n+1)^{2}} \frac{1}{\sqrt{k}}$
9. $\triangle A B C$ has $A B=A C$. Points $M$ and $N$ are midpoints of $\overline{A B}$ and $\overline{A C}$, respectively. The medians $\overline{M C}$ and $\overline{N B}$ intersect at a right angle. Find $\left(\frac{A B}{B C}\right)^{2}$.
10. Find the smallest integer $m>8$ for which there are at least eleven even and eleven odd positive integers $n$ so that $\frac{n^{3}+m}{n+2}$ is an integer. (We restricted the solution to $m>8$ after the contest since $m=8$ is a trivial solution, with $n^{3}+8$ divisible by $n+2$ )
11. Polynomial $P(x)=c_{2006} x^{2006}+c_{2005} x^{2005}+\ldots+c_{1} x+c_{0}$ has roots $r_{1}, r_{2}, \ldots, r_{2006}$. The coefficients satisfy $2 i \frac{c_{i}}{c_{2006-i}}=2 j \frac{c_{j}}{c_{2006-j}}$ for all pairs of integers $0 \leq i, j \leq 2006$. Given that $\sum_{i \neq j, i=1, j=1}^{2006} \frac{r_{i}}{r_{j}}=42$, determine $\sum_{i=1}^{2006}\left(r_{1}+r_{2}+\ldots+r_{2006}\right)$.
12. Find the total number of $k$-tuples $\left(n_{1}, n_{2}, \ldots, n_{k}\right)$ of positive integers so that $n_{i+1} \geq n_{i}$ for each $i$, and $k$ regular polygons with numbers of sides $n_{1}, n_{2}, \ldots, n_{k}$ respectively will fit into a tesselation at a point. That is, the sum of one interior angle from each of the polygons is $360^{\circ}$.
13. A ray is drawn from the origin tangent to the graph of the upper part of the hyperbola $y^{2}=x^{2}-x+1$ in the first quadrant. This ray makes an angle of $\theta$ with the positive $x$-axis. Compute $\cos \theta$.
14. Find the smallest nonnegative integer $n$ for which $\binom{2006}{n}$ is divisible by $7^{3}$.
15. Let $c_{i}$ denote the $i$ th composite integer so that $\left\{c_{i}\right\}=4,6,8,9, \ldots$. Compute

$$
\prod_{i=1}^{\infty} \frac{c_{i}^{2}}{c_{i}^{2}-1}
$$

(Hint: $\left.\sum_{i=1}^{n} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}\right)$.

