Geometry Solutions 2005 Rice Math Tournament February 26, 2005

1. Answer: $800 \pi f t^{2}$

$$
\frac{3}{4} \cdot 30^{2} \pi+\frac{1}{4} \cdot 10^{2} \pi+\frac{1}{4} \cdot 20^{2} \pi=800 \pi
$$

2. Answer: $\frac{11}{12}$

$$
\begin{gathered}
1 \cdot \frac{1}{2}+\frac{1}{2} \cdot \frac{1}{3}+\cdots+\frac{1}{11} \cdot \frac{1}{12} \\
=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\cdots+\left(\frac{1}{11}-\frac{1}{12}\right) \\
=1-\frac{1}{12} \\
=\frac{11}{12}
\end{gathered}
$$

3. Answer: 32

Since all triangles are similar, $\overline{A E}: \overline{E B}=\overline{E B}: \overline{E D}$. Let $\frac{E B}{A E}=x$. Since $\overline{E B}^{2}=\overline{E D}^{2}+\overline{B D}^{2}$, $(16 x)^{2}=8^{2}+\left(16 x^{2}\right)^{2}, \therefore x=\frac{\sqrt{2}}{2}$. Since $\overline{A E}=16, \overline{B D}=16 x^{2}$, the next vertical segment is $16 x^{2} \times x^{2}$, and so on. \therefore sum of all vertical segments is a geometric series $\frac{16}{1-x^{2}}=32$.
4. Answer: ($0, \frac{5}{4}$)

Let the center have y-coordinate y_{0}.
The circle must have exactly two points of intersection with the parabola and $y_{0}>1$.
Thus $x^{2}+\left(x^{2}-y_{0}\right)^{2}=1$ (from the point $\left(x_{0}, x_{0}^{2}\right)$ on the parabola) has exactly two solutions. $x^{4}+\left(-2 y_{0}+1\right) x^{2}+\left(y_{0}^{2}-1\right)=0$ has two double roots: $x+a, x-a$.

$$
\begin{gathered}
x^{4}+\left(1-2 y_{0}\right) x^{2}+\left(y_{0}^{2}-1\right)=\left(x^{2}-a^{2}\right)^{2} \\
y_{0}^{2}-1=\left(\frac{1-2 y_{0}}{2}\right)^{2} \\
y_{0}^{2}-1=y_{0}^{2}-y_{0}+\frac{1}{4} \\
y_{0}=\frac{5}{4}
\end{gathered}
$$

5. Answer: $\frac{1}{169}$

Call the side length of the smaller hexagon a. Then

$$
\begin{gathered}
\left(\frac{a}{2}\right)^{2}+\left(\frac{r \sqrt{3}}{2}+a \sqrt{3}\right)^{2}=r^{2} \\
\Rightarrow 13 a^{2}+12 a r-r^{2}=0 \\
\Rightarrow 13\left(\frac{a}{r}\right)^{2}+12\left(\frac{a}{r}\right)-1=0 \\
\Rightarrow \frac{a}{r}=\frac{1}{13}
\end{gathered}
$$

So the ratio of the areas is $\frac{1}{169}$.

6. Answer: 0

By power of a point,

$$
a(c+b)=17 \cdot 13
$$

and

$$
b(a+c)=13 \cdot 17 .
$$

So

$$
\begin{aligned}
a c+a b & =a b+b c \\
a b & =b c \\
a & =c
\end{aligned}
$$

Then $|M R-N S|=0$.

7. Answer: $\frac{2}{3}$

Note that $\triangle A Q R$ is similar to $\triangle A B C$. Also, the union of triangles $\triangle P Q Q^{\prime}$ and $\triangle R R^{\prime} S$ is a triangle similar to $\triangle A B C$. The same is true for $\triangle B P P^{\prime}$ and $\triangle S S^{\prime} C$. So the total area enclosed by the triangles is $a^{2}+b^{2}+c^{2}$ where a, b, and c are the side lengths of $A Q, P Q$ and $B P$ respectively. The area enclosed by the two rectangles is maximized when that of the triangles is minimized. We know $a+b+c=1$, and it is not hard to show that $a=b=c=\frac{1}{3}$ when this happens. It follows that the area enclosed by the triangles is $\left(\frac{1}{9}+\frac{1}{9}+\frac{1}{9}\right)$ times the area of $\triangle A B C$. The maximum area of the rectangles is therefore $\frac{2}{3}$ that of $\triangle A B C$.

8. Answer: 118

It is sufficient to calculate E. Consider the circle's curve only in the first quadrant starting in the bottom right corner, the path moves up through 20 squares and to the left through 20 . Since the curve contains no lattice points $\left(x^{2}+y^{2} \neq 20.05^{2}\right.$ for $\left.x, y \in Z\right)$ it passes through $41(20+20+1)$ squares in total.
Hence $E=4 \cdot 41=164$.
So $I \approx 1260-\frac{164}{2}=1260-82=1188$
So $\left\lfloor\frac{I}{10}\right\rfloor=118$.
9. Answer: $9 \boldsymbol{\pi}$

Draw the horizontal line $\overline{A Z}$ (bisects $\angle B A X$). Find coordinates of $x: x=R \cos \theta+r \cos (-\theta)=$ $(R+r) \cos \theta$; Find coordinates of $y: y=R \sin \theta+r \sin (-\theta)=(R-r) \cos \theta$. The polar equations of an elipse are of the form $x=a \cos \theta, y=b \sin \theta$. And its area $A=a b \pi=(R+r)(R-r) \pi=\frac{1}{4} R^{2} \pi=9 \pi$

10. Answer: $\frac{4}{27}$

Center it at $(0,0,0),(a, 0,0),(0, b, 0),(a, b, c),(0,0, c)$, etc. Consider the line l to connect $(a, 0,0) \&$ $(0, b, c)$. Pick K on l to be (p, q, r). Then $\frac{b}{c}=\frac{r}{q}$ by projection onto the y-z axis. So $\left.p q r=\left(p q^{2}\right)\left(\frac{b}{c}\right)\right)$. Also, $(q-c)=\left(-\frac{c}{a}\right)(p) ; q=c-\frac{c}{a} p \Rightarrow p=\frac{a}{c}(c-q) ; p=a-\frac{a}{c} q$ (by projection onto x-y plane). So $V=p q r=p q^{2}\left(\frac{b}{c}\right)=\left(\frac{b}{c}\right)\left(q^{2}\right)(a)\left(1-\frac{1}{c} q\right)=(a b c)\left(\frac{q}{c}\right)^{2}\left(1-\frac{q}{c}\right)=(a b c) u^{2}(1-u)$ where $0<u<1$. To maximize u^{2}, try $u=\frac{2}{3}+d\left(d \in\left\{-\frac{2}{3}, \frac{1}{3}\right\}\right)$

$$
\text { So } \begin{aligned}
u^{2}(1-u) & =\left(d+\frac{2}{3}\right)^{2}\left(\frac{1}{3}-d\right) \\
& =\left(d^{2}+\frac{4}{3} d+\frac{4}{9}\right)\left(\frac{1}{3}-d\right) \\
& =\frac{1}{3}\left(d^{2}+\frac{4}{3} d\right)+\frac{4}{27}-d^{3}-\frac{4}{3} d^{2}-\frac{4}{9} d \\
& =\frac{4}{27}+\left(-d^{3}-d^{2}\right)^{2} \leq \frac{4}{27} \text { or }-\frac{2}{3}<d<\frac{1}{3}
\end{aligned}
$$

Alternatively, Assume the vertices of the prism are $(0,0,0),(a, 0,0),(0, b, 0),(a, b, c),(0,0, c)$, etc. Let $C=(0,0,0)$ and l join $(a, b, 0)$ to $(0,0, c)$. Then a point K on l has the form $(t a, t b,(1-t) c)$ for some $0 \leq t \leq 1$. The resulting prism p^{\prime} has volume $t^{2}(1-t) a b c=t^{2}(1-t)$.

