Calculus Solutions 2005 Rice Math Tournament February 26, 2005

1. Answer: 17

The profit is P is revenue minus cost. Thus $P=n * D-\left(600+10 n+n^{2}\right)=-3 n^{2}+100 n-600$. Consider the smoothed version of P, and we can find the critical point of $16 \frac{2}{3}$. Thus either $n=16$ or $n=17$ is the largest profit. Quick computation yields $n=17$.
2. Answer: 0
$f(0)=\frac{1}{2} f(1), f\left(-\frac{1}{2}\right)=\frac{1}{2} f(0), f\left(-\frac{3}{4}\right)=\frac{1}{2} f\left(-\frac{1}{2}\right)$, and so on. So the limit is 0.
3. Answer: $\left(\frac{24}{4+\pi}, \frac{\mathbf{2 4}}{4+\pi}\right)$

We want to maximize the area of the window. Let x be the radius of the semicircular region and y the height of the rectangular portion of the window. The area of the window is $A=\frac{1}{2} \pi x^{2}+2 x y$. The perimeter is $P=\pi x+2 x+2 y$. Eliminating y in A yields $A=24 x-\left(2+\frac{\pi}{2}\right) x^{2}$. We can take the derivative and find the critical point of $x=\frac{24}{4+\pi}$. Solving for y yields the same answer.
4. Answer: $\frac{1}{13}$

Applying the chain rule to $f\left(f^{-1}(x)\right)=x$ yields $f^{\prime}\left(f^{-1}(x)\right) \cdot\left(f^{-1}\right)^{\prime}(x)=1$.
Rearranging yields $\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}$.
$f^{-1}(-5)$ is the solution to $-5=x^{5}+2 x^{3}+2 x$ which has the unique solution of $x=-1$.
$f^{\prime}(-1)=5+6+2=13$.
Thus $\frac{1}{13}$ is the answer.

5. Answer: $\frac{\mathbf{2 5 7}}{20}$

The average value is $\frac{\int_{-1}^{4} f(x) d x}{4-(-1)}=\frac{1}{5} \int_{-1}^{4}\left|x^{3}\right| d x=\frac{1}{5}\left(\int_{-1}^{0}-x^{3} d x+\int_{0}^{4} x^{3} d x\right)=\frac{257}{20}$.

6. Answer: $\mathbf{6} \sqrt{6}$ feet

From the diagram below, we can see we want to maximize θ. Note that $\tan \theta=\tan (A-B)=$ $\frac{\tan A-\tan B}{1+\tan A \tan B}=\frac{\frac{36}{x}-\frac{6}{x}}{1+\frac{36}{x} \frac{6}{x}}=\frac{42 x}{x^{2}+216}$. Using implicit differentiation, we can find that $\theta^{\prime}=\cos ^{2} \theta \cdot \frac{-42 x^{2}+9072}{\left(x^{2}+216\right)^{2}}$. The maximum occurs at $x=6 \sqrt{6}$.
7. Answer: $\frac{1}{e}$

$$
\begin{aligned}
& f(x)=x^{x} \\
\Longrightarrow & \ln f(x)=x \ln x \\
\Longrightarrow & \frac{f^{\prime}(x)}{f(x)}=1+\ln x \\
\Longrightarrow f^{\prime}(x)= & f(x)[1+\ln x]=x^{x}[1+\ln x]
\end{aligned}
$$

Critical points at $f^{\prime}(x)=0$

$$
\Longrightarrow 0=x^{x}[1+\ln x]
$$

$\Longrightarrow 0=1+\ln x \quad\left(x^{x}\right.$ always positive for $\left.x>0\right)$

$$
\Longrightarrow \ln x=-1
$$

$$
\Longrightarrow x=e^{-1}=\frac{1}{e}(\text { critical point })
$$

Furthermore,

$$
\begin{gathered}
f^{\prime \prime}(x)=f^{\prime}(x)[1+\ln x]+\frac{f(x)}{x} \\
f^{\prime \prime}=x^{x}(1+\ln x)^{2}+x^{x-1}>0(\text { for } x>0)
\end{gathered}
$$

So, $f^{\prime \prime}(x)>0$ for all $x>0$.
Hence, the function is concave up everywhere, and so $x=\frac{1}{e}$ must be a minimum.
8. Answer: $e^{2}-1$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{0}^{2}\left(1+\frac{t}{n+1}\right)^{n} d t & =\left.\lim _{n \rightarrow \infty}\left(1+\frac{t}{n+1}\right)^{n+1}\right|_{0} ^{2} \\
& =\lim _{n \rightarrow \infty}\left(1+\frac{2}{n+1}\right)^{n+1}-\lim _{n \rightarrow \infty}\left(1+\frac{0}{n+1}\right)^{n+1} \\
& =e^{2}-1\left(\text { since } \lim _{n \rightarrow \infty}\left(1+\frac{t}{n}\right)^{n}=e^{t}\right)
\end{aligned}
$$

9. Answer: - $\mathbf{1}$

Use integration by parts:

$$
\begin{gathered}
\int_{-\infty}^{\infty} \delta^{\prime}(x) \sin (x) d x \\
=\left.\delta(x) \sin (x) d x\right|_{-\infty} ^{\infty}-\int_{-\infty}^{\infty} \delta(x) \cos (x) d x \\
=0-\cos (0) \quad\left(\delta(x)=0 " a t^{\prime \prime} \pm \infty\right) \\
=-1
\end{gathered}
$$

10. Answer: $\frac{2}{p(1-p)^{3}}$

$$
\begin{gathered}
\sum_{i=0}^{\infty} i(i+1) p^{i-2}=\sum_{i=0}^{\infty} i(i-1) p^{i-2}+2 \sum_{i=0}^{\infty} i p^{i-2} \\
\sum_{i=0}^{\infty} i(i-1) p^{i-2}=\frac{d^{2}}{d p^{2}} \sum_{i=0}^{\infty} p^{i}=\frac{d^{2}}{d p^{2}} \frac{1}{1-p}=\frac{d}{d p} \frac{1}{(1-p)^{2}}=\frac{2}{(1-p)^{3}} \\
\sum_{i=0}^{\infty} i p^{i-2}=\frac{1}{p} \sum_{i=0}^{\infty} i p^{i-1}=\frac{1}{p} \frac{d}{d p} \frac{1}{1-p}=\frac{1}{p(1-p)^{2}}
\end{gathered}
$$

Then $\frac{2}{(1-p)^{3}}+\frac{2}{p(1-p)^{2}}=\frac{2}{p(1-p)^{3}}$

