Algebra Solutions 2005 Rice Math Tournament
 February 26, 2005

1. Answer: $\frac{1}{3}$

If g is the fraction of the class that are girls and b is the fraction of the class that are boys, then $91 g+85 b=89$ and $g+b=1$, so $91(1-b)+85 b=89$, which simplifies to $b=\frac{1}{3}$.
2. Answer: 1

$$
\begin{gathered}
\left(x^{2}+4\right)^{2}=(2 x-3)^{2} \\
\left(x^{2}+4\right)^{2}-(2 x-3)^{2}=0 \\
\left(x^{2}+4+2 x-3\right)\left(x^{2}+4-2 x+3\right)=0 \\
\left(x^{2}+2 x+1\right)\left(x^{2}-2 x+7\right)=0 \\
(x+1)^{2}\left(x^{2}-2 x+7\right)=0
\end{gathered}
$$

$x^{2}-2 x+7$ has no real roots since $2^{2}-4 \cdot 7<0$.
3. Answer: \boldsymbol{m}^{2}

A lillypad will be off if an even number of frogs jump on it. Hence, the $m^{\text {th }}$ lillypad will be on if m has an odd number of factors. m has an odd number of factors $\Longleftrightarrow m$ is a perfect square.
4. Answer: $\{(2,4),(4,2)\}$

$$
\begin{gathered}
\frac{\log A}{\log B}=\frac{A}{B} \\
B \log A=A \log B \\
\log A^{B}=\log B^{A} \\
A^{B}=B^{A} \\
(A, B) \in\{(2,4),(4,2)\}
\end{gathered}
$$

5. Answer: 17

$$
\begin{aligned}
\mathrm{f}(0) & =\mathrm{f}(-8+8) \\
& =\mathrm{f}(-8)+\mathrm{g}(8)+8 \\
& =-8+17+8 \\
& =17
\end{aligned}
$$

6. Answer: 2005
$x=2$ so $\left(x^{2}+1\right)\left(\left(\left(x^{2}+1\right) \cdot x^{2}\right)^{2}+1\right)=2005$.
7. Answer: 3

The roots are $n, n+1$, and $n+2$. Then $a^{2}=((n)+(n+1)+(n+2))^{2}=(3 n+3)^{2}=9(n+1)^{2}$. $b+1=n(n+1)+n(n+2)+(n+1)(n+2)+1=3 n^{2}+6 n+3=3(n+1)^{2}$. So $\frac{a^{2}}{b+1}=3$.
8. Answer: $a=4, b=3$

Since $24 a b 32$ is divisible by 9 ,

$$
\begin{gathered}
2+4+a+b+3+2 \equiv 0(\bmod 9) \\
a+b \equiv-2(\bmod 9)
\end{gathered}
$$

So we have either $a+b=7$ or $a+b=16$
Since $24 a b 32$ is divisible by 11 ,

$$
\begin{gathered}
-2+4-a+b-3+2 \equiv 0(\bmod 11) \\
a-b \equiv 1(\bmod 11)
\end{gathered}
$$

So $a-b=1$. Hence, the only solution is $a=4, b=3$.
9. Answer: 12

Let a, b, c be the roots of $x^{3}+A x^{2}+B x+C=0$.

$$
\begin{gathered}
A=-(a+b+c)=1 \\
B=a b+b c+a c=\frac{1}{2}\left[(a+b+c)^{2}-\left(a^{2}+b^{2}+c^{2}\right)\right]=\frac{1}{2}[1-17]=-8
\end{gathered}
$$

Therefore:

$$
\begin{aligned}
a^{3}+A a^{2}+B a+C & =0 \\
b^{3}+A b^{2}+B b+C & =0 \\
c^{3}+A c^{2}+B c+C & =0
\end{aligned}
$$

Add them up to get:

$$
\begin{gathered}
11+A(17)+B(-1)+C=0 \\
11+17+8+3 C=0 \\
C=\frac{-36}{3}=-12 \\
C=-a b c
\end{gathered}
$$

Thus,

$$
a b c=12
$$

Alternatively, solve to get

$$
a=b=-2, c=3
$$

10. Answer: $x^{4}-14 x^{2}+9$

Let $x=\sqrt{2}+\sqrt{5}$.
Then $x^{2}=2 \sqrt{10}+7$
$x^{4}=89+28 \sqrt{10}$
$x^{4}-14 x^{2}=-9$
so if $p(x)=x^{4}-14 x^{2}+9$, then $p(\sqrt{2}+\sqrt{5})=0$.
$p(x)$ must be of at least degree 4 since $\sqrt{2}+\sqrt{5}$ is not the root of any quadratic or cubic polynomials with integer coefficients.

