Advanced Solution
 2005 Rice Math Tournament
 February 26, 2005

1. Answer: $\frac{9}{49}$

$$
\begin{aligned}
P(\text { True } \mid \text { Droop }) & =\frac{P(\text { True }) P(\text { Droop } \mid \text { True })}{P(D \text { roop })} \\
& =\frac{P(T) P(D \mid T)}{P(T)(P(D \mid T))+P(\text { lie }) P(D \mid \text { lie })} \\
& =\frac{\frac{3}{5} \frac{1}{10}}{\frac{3}{5} \frac{1}{10}+\frac{2}{5} \frac{2}{3}}=\frac{9}{49}
\end{aligned}
$$

2. Answer: 3125

$$
(2000+5)^{2005}=2000^{k} \cdot 5^{m}+5^{2005}
$$

Since $2000^{k} \cdot 5^{m}$ is divisible by 10,000 , we want to find the last digits of 5^{2005}.
[The following are all mod 10,000 .]
$5^{1}=5$
$5^{2}=25$
$5^{3}=125$
$5^{4}=625$
$5^{5}=3125$
$5^{6}=5625$
$5^{7}=8125$
$5^{8}=625=5^{4}$
...so these repeat every four starting with 5^{3}.

$$
(2005-3)(\bmod 4)=2002(\bmod 4)=2
$$

Therefore, $5^{2005}=3125$.
3. Answer:
4. Answer: $\frac{7}{2}-\frac{\sqrt{3}}{2}$

The square projects out of the hexagon on top and bottom in isosceles right triangles. The area of the hexagon is $\frac{3 s^{2} \sqrt{3}}{2}$ where $s=1$. Each triangle is easiest dealt with as two triangles: $A=$ $\frac{3 \sqrt{3}}{2}+2 \cdot 2 \cdot \frac{1}{2}\left(1-\frac{\sqrt{3}}{2}\right)^{2}=\frac{3 \sqrt{3}}{2}+2-2 \sqrt{3}+\frac{3}{2}=\frac{7}{2}-\frac{\sqrt{3}}{2}$
5. Answer: 500

$$
\begin{aligned}
\left\lfloor\frac{2005}{5}\right\rfloor & =401 \\
\left\lfloor\frac{401}{5}\right\rfloor & =80 \\
\left\lfloor\frac{80}{5}\right\rfloor & =16 \\
\left\lfloor\frac{16}{5}\right\rfloor & =3 \\
\left\lfloor\frac{3}{5}\right\rfloor & =0 \\
401+80+16 & +3=500
\end{aligned}
$$

6. Answer: $\frac{\sqrt{2005 \cdot 2009}-2005}{2}$

Let the continued fraction be x.

$$
\begin{gathered}
x=\frac{2005}{2005+x} \\
x=\frac{-2005 \pm \sqrt{2005^{2}+4 \cdot 2005}}{2} \\
x=\frac{\sqrt{2005 \cdot 2009}-2005}{2}
\end{gathered}
$$

Note: (-) is dropped since clearly positive.
7. Answer: $\frac{31}{30}$ muffins

Let $\phi(n)=$ number of integers relatively prime to n.

$$
\phi(n)=n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \ldots\left(1-\frac{1}{p_{k}}\right)
$$

where p_{1}, \ldots, p_{k} are distinct primes dividing n .
We need $\phi(n)=4$. So $5,8,10,12$ are the only solutions to this equation.
Thus your expected winnings are

$$
\begin{gathered}
\frac{1}{4} \cdot \frac{4}{5} \cdot 3-\frac{1}{4} \cdot \frac{1}{5}+\frac{1}{4} \cdot \frac{4}{8} \cdot 3-\frac{1}{4} \cdot \frac{4}{8}+\frac{1}{4} \cdot \frac{4}{10} \cdot 3-\frac{1}{4} \cdot \frac{6}{10}+\frac{1}{4} \cdot \frac{4}{12} \cdot 3-\frac{1}{4} \cdot \frac{8}{12} \\
=\frac{3}{5}-\frac{1}{20}+\frac{3}{8}-\frac{1}{8}+\frac{3}{10}-\frac{3}{20}+\frac{1}{4}-\frac{1}{6}=\frac{72-6+45-15+36-18+30-20}{120}=\frac{124}{120}=\frac{31}{30}
\end{gathered}
$$

8. Answer: $\frac{19}{20}$

If $P(x)=\sum_{i=0}^{n} c_{i} x^{i}$, then $P(x)-P(y)=\sum_{i=0}^{n} c_{i}\left(x^{i}-y^{i}\right)$. Note that $x^{i}-y^{i}$ is divisible by $x-y$. If $x-y \geq 2$, then $P(x)-P(y)$ will be composite. Since the degree is at least $2, P(x)-P(y)>$ $c_{2}\left(x^{2}-y^{2}\right)=c_{2}(x+y)(x-y)$. Note that $x+y>1$, so $\frac{P(x)-P(y)}{x-y}$ is an integer larger than 1 . So we only need $x-y \geq 2$. There are 780 total pairs (x, y). All will work except $(x, y)=(2,1),(3,2), \ldots,(40,39)$. The answer is $\frac{780-39}{780}=\frac{19 \cdot 39}{20 \cdot 39}=\frac{19}{20}$.

9. Answer: $\boldsymbol{S}_{\mathbf{2 0 0 5 , 1}}, \boldsymbol{S}_{\mathbf{2 0 0 2 , 2}}, \boldsymbol{S}_{\mathbf{3 9 9 , 5}}$, and $\boldsymbol{S}_{\mathbf{1 9 6 , 1 0}}$

$$
\begin{gathered}
\sum_{n \in S_{m k}} n=\sum_{i=0}^{k-1} m+i \\
2005=\frac{(k-1)(k)}{2}+k m \\
4010=(k-1)(k)+2 k m \\
4010=k(k-1+2 m)
\end{gathered}
$$

k and $k-1+2 m$ must be factors of 4010
$4010=2 \cdot 5 \cdot 401$
$k=1$ yields $m=2005$
$k=2$ yields $m=1002$
$k=5$ yields $m=399$
$k=10$ yields $m=196$
For $k=401$, we get $10=2 m+400$, which has no positive integers solutions for m.
Thus, $k=1,2,5,10$ are the only solutions.
10. Answer: $(2,8),(2,12),(4,8),(4,12),(6,8),(6,12),(8,8),(8,12)$

$$
5^{m}+3^{n}-1 \equiv 0(\bmod 15)
$$

Taking $\bmod 5$:

$$
\begin{gathered}
3^{n}-1 \equiv 0(\bmod 5) \\
n \equiv 0(\bmod 4)
\end{gathered}
$$

Taking mod 3:

$$
\begin{gathered}
5^{m}-1 \equiv 0(\bmod 3) \\
m \equiv 0(\bmod 2)
\end{gathered}
$$

Indeed,

$$
5^{2 p}+3^{4 q}-1 \equiv 10^{p}+6^{q}-1 \equiv 10+6-1 \equiv 0(\bmod 15)
$$

Hence, all solutions are of the form

$$
m=2 p, n=4 q, p>0, q>0
$$

