Power Test 2004 Rice Math Tournament February 28, 2004

Justify all answers, or give examples where appropriate. Partial credit will be given when appropriate.

Interval Notation

An interval from a to b of real numbers is denoted $[a, b)$ where this is the set $x: a=x<b$. A "[" means that the endpoint is included in the set while a "(" means that the endpoint is not included. So the interval $\left[\frac{\pi}{2}, \pi\right)$ is the set of real numbers between $\frac{\pi}{2}$ and π with $\frac{\pi}{2}$ included but π not included.

Partition:

Define a partition of the interval $[a, b)$ as a finite subset of points $x_{0}, x_{1}, \ldots, x_{n}$ such that $a=x_{0}, b=x_{n}$, and $x_{i}<x_{i+1}$ for all i such that $0<i<n$. When we talk about a partition of a set into subsets, we mean the set of subsets of $[a, b):\left[x_{0}, x_{1}\right),\left[x_{1}, x_{2}\right), \ldots,\left[x_{n-1}, x_{n}\right)$.

Translation congruent:

A set E is said to be 2π-translation congruent to $I_{1}=[0,2 \pi)$ (denoted $E \sim_{2 \pi} I_{1}$) if there is a partition of E into subsets such that adding a multiple of 2π to each subset will produce disjoint sets whose union is $[0,2 \pi)$.

Example: $\left[-\pi,-\frac{\pi}{2}\right) \cup\left[\frac{3 \pi}{2}, 3 \pi\right) \sim_{2 \pi}[0,2 \pi)$ because the set $A=\left[-\pi,-\frac{\pi}{2}\right)+2 \pi \cup\left[\frac{3 \pi}{2}, 2 \pi\right) \cup[2 \pi, 3 \pi)-2 \pi=$ $\left[\pi, \frac{3 \pi}{2}\right) \cup\left[\frac{3 \pi}{2}, 2 \pi\right) \cup[0, \pi)=[0,2 \pi)$.

1. Show that $E=\left[-\frac{32 \pi}{7},-4 \pi\right) \cup\left[-\pi,-\frac{4 \pi}{7}\right) \cup\left[\frac{4 \pi}{7}, \pi\right) \cup\left[4 \pi, \frac{32 \pi}{7}\right)$ is 2π-translation congruent to $[0,2 \pi)$.

Dilation congruent:

A set E is said to be 2-dilation congruent to $I_{2}=[-2 \pi,-\pi) \cup[\pi, 2 \pi)\left(\right.$ denoted $\left.E \sim_{2} I_{2}\right)$ if there is a partition of E into subsets such that multiplying each subset by a power of 2 will produce disjoint sets whose union is I_{2}.
Example: $\left[-\frac{\pi}{2},-\frac{\pi}{4}\right) \cup\left[\frac{7 \pi}{4}, \frac{7 \pi}{2}\right)_{2}[-2 \pi,-\pi) \cup[\pi, 2 \pi)$ because the set $A=\left[-\frac{\pi}{2},-\frac{\pi}{4}\right) * 2^{2} \cup\left[\frac{7 \pi}{4}, 2 \pi\right) * 2^{0} \cup$ $\left[2 \pi, \frac{7 \pi}{2}\right) * 2^{-1}=[-2 \pi,-\pi) \cup\left[\frac{7 \pi}{4}, 2 \pi\right) \cup\left[\pi, \frac{7 \pi}{4}\right)=[-2 \pi,-\pi) \cup[\pi, 2 \pi)$.
2. Show that $E=\left[-\frac{32 \pi}{7},-4 \pi\right) \cup\left[-\pi,-\frac{4 \pi}{7}\right) \cup\left[\frac{4 \pi}{7}, \pi\right) \cup\left[4 \pi, \frac{32 \pi}{7}\right)$ is 2-dilation congruent to I_{2}.

Wavelet Sets

Define a wavelet set to be any set E which is 2π-translation congruent to I_{1} and 2-dilation congruent to I_{2}. So the set from our first two problems is a wavelet set.
3. Show that the two example sets are also wavelets sets. (i.e. Show $\left[-\pi,-\frac{\pi}{2}\right) \cup\left[\frac{3 \pi}{2}, 3 \pi\right) 2[-2 \pi,-\pi) \cup[\pi, 2 \pi)$ and $\left[-\frac{\pi}{2},-\frac{\pi}{4}\right) \cup\left[\frac{7 \pi}{4}, \frac{7 \pi}{2}\right) 2 \pi[0,2 \pi)$.)
Prove:
4. If E is a wavelet set, then zero is not an element of E.
5. The interval $[a, b)$ is 2π-translation congruent to $[0,2 \pi)$ if and only if $b-a=2 \pi$.
6. For $a>0$, the interval $[a, b)$ is 2-dilation congruent to $[\pi, 2 \pi)$ if and only if $b=2 a$.

1-interval wavelet sets

7. Prove that there can be no wavelet sets of just one interval (of the form $[a, b)$).

2-interval
Now study wavelet sets which are the union of 2 intervals. Find any wavelet sets which are of the form $E=[a, b) \cup[c, d)$ with $b<c$.
8. Prove $a=2 b$ and $d=2 c$ if the set is a wavelet set.
9. Write c as a function of b and using one variable write out the form that all 2 interval wavelet sets must have.

3-interval
Now we try to find all wavelet sets which are a union of 3 intervals. $[u, v) \cup[x, y) \cup[w, z)$
10. Reduce this case to finding 2 intervals $[x, y) \cup[w, z)$ which are 2π-translation congruent and 2-dilation congruent to one interval from the 2 interval case.
11. If one of the three intervals is $[-2 b,-b)$ where $b>0$, prove $b<\pi$.
12. Show that we need our sets to be of the form $[-2 b,-b) \cup[x, 2 \pi-2 b) \cup[2 n \pi-b, 2 n \pi+x)$ for some $n>1$ and some $x>0$.
13. Choose some dilation 2^{j} that makes the condition in (10) hold. Solve for x and b in terms of n and j.

4-interval

Define a 4-interval wavelet set of the form $[a, b) \cup[c, d) \cup[e, f) \cup[g, h)$ to be symmetric if $a=-h$, $b=-g, c=-f$, and $d=-e$. Now examine symmetric 4 interval wavelet sets of the form: $\left[-y,-2^{j} \pi\right) \cup$ $[-\pi,-x) \cup[x, \pi) \cup\left[2^{j} \pi, y\right)$.
14. Write y in terms of x in two separate ways to solve for x and y as a function of j, and then write out the wavelet set in terms of only j.

