Calculus Solutions
 2004 Rice Math Tournament
 February 28, 2004

1. Answer: $\frac{7}{4}$

$\lim _{x \rightarrow \infty}\left(\sqrt{4 x^{2}+7 x}-2 x\right)=\lim _{x \rightarrow \infty}\left(\sqrt{4 x^{2}+7 x}-2 x\right) \cdot \frac{\left(\sqrt{4 x^{2}+7 x}+2 x\right)}{\left(\sqrt{4 x^{2}+7 x}+2 x\right)}=\lim _{x \rightarrow \infty} \frac{7 x}{\left(\sqrt{4 x^{2}+7 x}+2 x\right)} \cdot \frac{\frac{1}{x}}{\frac{1}{x}}=$ $\lim _{x \rightarrow \infty} \frac{7}{\left(\sqrt{4+\frac{7}{x}}+2\right)}=\frac{7}{4}$.

2. Answer: 19

The derivative of $f(x)-f(2 x)$ is $f^{\prime}(x)-2 f^{\prime}(2 x)$. So $f^{\prime}(1)-2 f^{\prime}(2)=5, f^{\prime}(2)-2 f^{\prime}(4)=7$. Thus

$$
f^{\prime}(1)-4 f^{\prime}(4)=\left(f^{\prime}(1)-2 f^{\prime}(2)\right)+2\left(f^{\prime}(2)-2 f^{\prime}(4)\right)=5+2 \cdot 7=19
$$

the answer.

3. Answer: $[3,4]$ or $(3,4)$ or from $t=3$ to $t=4$

The velocity of the object is given by $v(t)=x^{\prime}(t)=20 t^{3}-5 t^{4}$, and the acceleration function is $a(t)=v^{\prime}(t)=60 t^{2}-20 t^{3}$. The object is slowing down when the velocity is positive and the acceleration is negative, or vice versa. $v(t)$ is positive from $t=0$ to $t=4$ and is negative after that. $a(t)$ is positive from $t=0$ to $t=3$ and negative afterward. These only differ in sign from $t=3$ to $t=4$.
4. Answer: 1

Let $g(x)=\log f(x)=x \log x$. Then $\frac{f^{\prime}(x)}{f(x)}=g^{\prime}(x)=1+\log x$. Therefore $f(x)=f^{\prime}(x)$ when $1+\log x=1$, that is, when $x=1$.
5. Answer: 5- $\sqrt{3}$ miles

Let x be the amount of old road restored. Then the length of the new road is $\sqrt{9+(5-x)^{2}}$ using the Pythagorean Theorem. Thus the total cost of the plan is $C(x)=200000 x+400000 \sqrt{x^{2}-10 x+34}$. The minimum cost occurs at one of the critical points which are $x=5 \pm \sqrt{3}$. Clearly $5+\sqrt{3}$ is not a valid answer and one can check $5-\sqrt{3}$ is indeed a minimum.
6. Answer: 2

The two graphs intersect at $x^{2}-2 x^{2}+8 x^{2}=28$ or rather $x= \pm 2$ with $y= \pm 4$. At $x=+2, m_{1}=2$ and $m_{2}=y^{\prime}(2)$. Using implicit differentiation on the second graph, we find $y^{\prime}(x)=\frac{y-2 x}{4 y-x}$ and plugging in $(2,4)$ gives a slope of 0 . If α is the angle between the graphs then $|\tan (\alpha)|=\left|\frac{m_{2}-m_{1}}{1+m_{1} m_{2}}\right|$. Plugging in the values yields the answer 2. $x=-2$ yields the same value.
7. Answer: $\pi / 6$

The mouse can wait some amount of time while the table rotates and then spend the remainder of the time moving along that ray at $1 \mathrm{~m} / \mathrm{s}$. He can reach any point between the starting point and the furthest reachable point along the ray, $(1-\theta / \pi)$ meters out. So the area is

$$
\int_{0}^{\pi}(1 / 2)(1-\theta / \pi)^{2} d \theta=(1 / 2)(1 / \pi)^{2} \int_{0}^{\pi} \theta^{2} d \theta=\pi / 6
$$

8. Answer: 27500 foot-pounds

Let x indicate the distance the cow has yet to travel. Then the work for a distance $d x$ is $(2 x+200-$ $\left.\frac{1}{2}(100-x)\right) d x$. Thus the total work is $\int_{0}^{100}\left(\frac{5}{2} x+150\right) d x=27500$ foot-pounds.

9. Answer: $\frac{3 \sqrt{3}}{2}$

The base region is bounded on the left by $x=y^{2}$ and on the right by $2 y^{2}=3-x$. The intersection points are $(1,1)$ and $(1,-1)$. Each cross-section, say $x=a$, is an equilateral triangle. The length of a side is $2 y$ where $y=\sqrt{x}$ for $a \leq 1$ but it is $y=\sqrt{\frac{3-x}{2}}$ for $a \geq 1$. The area of an equilateral triangle is $\frac{\sqrt{3} s^{2}}{4}$ where s is the side length. Thus the volume is $\int_{0}^{1} \frac{\sqrt{3}(2 \sqrt{x})^{2}}{4} d x+\int_{1}^{3} \frac{\sqrt{3}}{4}\left(2 \sqrt{\frac{3-x}{2}}\right)^{2} d x=$ $\sqrt{3} \int_{0}^{1} x d x+\frac{\sqrt{3}}{2} \int_{1}^{3}(3-x) d x=\frac{3 \sqrt{3}}{2}$.
10. Answer: $\frac{1}{e}$

The ratio test tells us that the series converges if

$$
\lim _{n \rightarrow \infty} \frac{\frac{(n+1)!}{(c(n+1))^{n+1}}}{\frac{n!}{(c n)^{n}}}=\frac{1}{c} \cdot \lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{n}
$$

is less than one and diverges if it is greater than one. But

$$
\lim _{n \rightarrow \infty}\left(\frac{n}{n+1}\right)^{n}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{-n}=\frac{1}{e}
$$

Then the limit above is just $\frac{1}{c e}$, so the series converges for $c>\frac{1}{e}$ and diverges for $0<c<\frac{1}{e}$.

