Algebra Test Solutions
 2004 Rice Math Tournament
 February 28, 2004

1. Answer: 6

This is easiest to see by simply graphing the inequalities. They correspond to the (strict) interiors of circles of radius 4 and centers at $(0,0),(4,0),(0,4)$, respectively. So we can see that there are 6 lattice points in their intersection (circled in the figure).

2. Answer: 6

For positive integers a, b, we have

$$
a!\mid b!\Leftrightarrow a!\leq b!\Leftrightarrow a \leq b .
$$

Thus,

$$
(n!)!)!\mid(2004!)!\Leftrightarrow(n!)!\leq 2004!\Leftrightarrow n!\leq 2004 \Leftrightarrow n \leq 6
$$

3. Answer: 8

Let $x=2004$. Then the expression inside the floor brackets is

$$
\frac{(x+1)^{3}}{(x-1) x}-\frac{(x-1)^{3}}{x(x+1)}=\frac{(x+1)^{4}-(x-1)^{4}}{(x-1) x(x+1)}=\frac{8 x^{3}+8 x}{x^{3}-x}=8+\frac{16 x}{x^{3}-x}
$$

Since x is certainly large enough that $0<16 x /\left(x^{3}-x\right)<1$, the answer is 8 .
4. Answer: $\boldsymbol{x}=\mathbf{1 0}, \boldsymbol{y}=5, \boldsymbol{z}=\mathbf{4}$

Factoring, $(x-7)(y-3)=6,(x-7)(z-2)=6,(y-3)(z-2)=4$. This implies that

$$
\begin{aligned}
& x-7=3 \\
& y-3=2 \\
& z-2=2
\end{aligned}
$$

Thus $x=10, y=5, z=4$.
5. Answer: $\frac{-1+\sqrt{5}}{2}$

Draw a right triangle with legs $1, x$; then the angle θ opposite x is $\tan ^{-1} x$, and we can compute $\cos (\theta)=\frac{1}{\sqrt{x^{2}+1}}$. Thus, we only need to solve $x=\frac{1}{\sqrt{x^{2}+1}}$. This is equivalent to $x \sqrt{x^{2}+1}=1$. Square both sides to get $x^{4}+x^{2}=1 \Rightarrow x^{4}+x^{2}-1=0$. Use the quadratic formula to get the solution $x^{2}=\frac{-1+\sqrt{5}}{2}$ (unique since x^{2} must be positive).

6. Answer: 2hours.

Adding the individual rates, we get $\frac{1}{3}+\frac{1}{10}+\frac{1}{15}=\frac{1}{2}$ of the room is cleaned per hour so the whole room takes two hours.
7. Answer: $0<x<1$ or $2<x<3$ or $4<x<5$

The sign of one of the terms switches every time x moves from the range $(I, I+1)$ to $(I+1, I+2)$. When x is less than zero, all terms are negative so the LHS is negative. Also note that x is undefined at $1,3,5$.

8. Answer: 128

For any integer $n \geq 0$, the given implies $x^{n+3}=-4 x^{n+1}+8 x^{n}$, so we can rewrite any such power of x in terms of lower powers. Carrying out this process iteratively gives

$$
\begin{aligned}
x^{7} & =-4 x^{5}+8 x^{4} \\
& =8 x^{4}+16 x^{3}-32 x^{2} \\
& =16 x^{3}-64 x^{2}+64 x \\
& =-64 x^{2}+128 .
\end{aligned}
$$

Thus, our answer is 128 .

9. Answer: $\mathbf{6 7 7}$

If d is the relevant greatest common divisor, then $a_{1000}=a_{999}^{2}+1 \equiv 1=a_{0}(\bmod d)$, which implies (by induction) that the sequence is periodic modulo d, with period 1000. In particular, $a_{4} \equiv a_{2004} \equiv 0$. So d must divide a_{4}. Conversely, we can see that $a_{5}=a_{4}^{2}+1 \equiv 1=a_{0}$ modulo a_{4}, so (again by induction) the sequence is periodic modulo a_{4} with period 5 , and hence a_{999}, a_{2004} are indeed both divisible by a_{4}. So the answer is a_{4}, which we can compute directly; it is 677 .
10. Answer: $-\frac{2010012}{2010013}$

Let z_{1}, \ldots, z_{5} be the roots of $Q(z)=z^{5}+2004 z-1$. We can check these are distinct (by using the fact that there's one in a small neighborhood of each root of $z^{5}+2004 z$, or by noting that $Q(z)$ is relatively prime to its derivative). And certainly none of the roots of Q is the negative of another, since $z^{5}+2004 z=1$ implies $(-z)^{5}+2004(-z)=-1$, so their squares are distinct as well. Then, $z_{1}^{2}, \ldots, z_{5}^{2}$ are the roots of P, so if we write C for the leading coefficient of P, we have

$$
\begin{aligned}
& \frac{P(1)}{P(-1)}=\frac{C\left(1-z_{1}^{2}\right) \ldots\left(1-z_{5}^{2}\right)}{C\left(-1-z_{1}^{2}\right) \ldots\left(-1-z_{5}^{2}\right)} \\
& =\frac{\left[\left(1-z_{1}\right) \ldots\left(1-z_{5}\right)\right] \cdot\left[\left(1+z_{1}\right) \ldots\left(1+z_{5}\right)\right]}{\left[\left(i-z_{1}\right) \ldots\left(i-z_{5}\right)\right] \cdot\left[\left(i+z_{1}\right) \ldots\left(i+z_{5}\right)\right]} \\
& =\frac{\left[\left(1-z_{1} \ldots . .\left(1-z_{5}\right)\right] \cdot\left(-1-z_{1}\right) \ldots\left(-1-z_{5}\right)\right]}{\left[\left(i-z_{1}\right) \ldots\left(i-z_{5}\right) \cdot\left[\left(-i-z_{1}\right) \ldots\left(-i-z_{5}\right)\right]\right.} \\
& =\frac{\left(1^{5}+2004 \cdot 1-1\right)\left(-1^{5}+2004 \cdot(-1)-1\right)}{\left(i^{5}+20044 \cdot-1\right)\left(-i^{5}+2004 \cdot(-i)-1\right)} \\
& =\frac{(2004)(-2006)}{(-1+2005 i)(-1-2005 i)} \\
& =-\frac{2005^{2}-1}{2005^{2}+1} \\
& =-\frac{4005^{2}+1}{4020024}=-\frac{2010012}{2010013} \text {. }
\end{aligned}
$$

