Advanced Topics Solutions
 2004 Rice Math Tournament
 February 28, 2004

1. Answer: $\left(\begin{array}{cc}1 & 2500 \\ 0 & 1\end{array}\right)$

First note that $\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}1 & (a+b) \\ 0 & 1\end{array}\right)$. This implies the given product is

$$
\left(\begin{array}{cc}
1 & (1+3+5+\ldots+99) \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & 50^{2} \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & 2500 \\
0 & 1
\end{array}\right)
$$

2. Answer:. $\mathbf{0 1 0} \overline{\mathbf{1 3}}_{\mathbf{6}}$.

$\frac{1}{9}-\frac{1}{10}+\frac{1}{7}-\frac{1}{8}=\frac{73}{9 \cdot 8 \cdot 7 \cdot 5}$. Note this is all base 10 . To convert to a base 6 decimal, we get each digit by multiplying the fraction by 6 and taking the integer portion. This is the reverse of converting integers to base 6 . Note that the decimal begins to repeat after the first five places. The answer is $.010 \overline{13}_{6}$.

3. Answer: $\sin \left(80^{\circ}\right)$

The expression is equivalent to $\cos \left(10^{\circ}\right)+\cos \left(10^{\circ}\right)+\sin \left(100^{\circ}\right)+\sin \left(280^{\circ}+2 \cdot 360^{\circ}\right)+\sin \left(280^{\circ}+27 \cdot 360^{\circ}\right)=$ $\cos \left(10^{\circ}\right)+\cos \left(10^{\circ}\right)+\sin \left(100^{\circ}\right)+\sin \left(280^{\circ}\right)+\sin \left(280^{\circ}\right)=\cos \left(10^{\circ}\right)+\cos \left(10^{\circ}\right)+\cos \left(10^{\circ}\right)-\cos \left(10^{\circ}\right)-$ $\cos \left(10^{\circ}\right)=\cos \left(10^{\circ}\right)=\sin \left(80^{\circ}\right)$.
4. Answer: $3 \sqrt{2}$

Using the law of cosines in the right triangle, we find $9^{2}=6^{2}+5^{2}-2(5)(6) \cos a$ where a is the angle the triangles have in common. Thus $\cos a=\frac{-1}{3}$. Since $\sin ^{2} a+\cos ^{2} a=1, \sin a=\frac{2 \sqrt{2}}{3}$. Using the law of sines in the left triangle yields $\frac{x}{\sin 30^{\circ}}=\frac{8}{\sin a}$. Thus, $x=3 \sqrt{2}$.
5. Answer: 1680

There are 8! orders for RICEOWLS and each of the 4! orders of WISE are equally likely within them, so $\frac{8!}{4!}=8 * 7 * 6 * 5=1680$ have the correct order.
6. Answer: $\mathbf{2 F}_{\mathbf{2 0 0 5}}$.
$F_{0}=1=F_{1}$. Then $F_{1}+F_{2}=F_{3}$. Then $F_{3}+F_{4}=F_{5}$. And so on until we get $F_{2006}+F_{2003}$. This equals $F_{2005}+F_{2004}+F_{2003}=2 F_{2005}$.
7. Answer: $\frac{17}{4}$

Let X be the number of days until Chris is king if Adam is king and Y be the number of days until Chris is king if Bill is king. Then $X=1+\frac{X}{3}+\frac{Y}{3}+\frac{0}{3}$ and $Y=1+\frac{X}{2}+\frac{Y}{4}+\frac{0}{4}$. Solving for X we get $\frac{13}{4}$ but we want expected day, not "days until" so we add 1 day to get $\frac{17}{4}$.
8. Answer: 0
$(i+1)^{4}$ is in the direction of -1 . Also, $(i-1)^{4}$ is in the direction of -1 and they have the same magnitude. Call $(i+1)^{4}=n$. Then this is $n^{501}-n^{501}=0$.
9. Answer: 30

It's best to rewrite it as $\cos x=\frac{x^{2}}{2004}$ and first to consider only positive values. Clearly, $x<\sqrt{2004}$ in agreement with the range of $\cos x$. We'll definitely have 2 solutions for every interval [$2 \pi *(n-1), 2 \pi *(n)]$ for $n=1,2, \cdot, m$ for some m. It's not hard to see that m is the largest integer that does not exceed $\frac{\sqrt{2004}}{2 \pi}$. Since $44^{2}<2004<45^{2}, 44<x<45$. The expression is hence between $\frac{22}{\pi}$ and $\frac{22.5}{\pi}$. Note that $\frac{22}{7}>3.142>\pi$, so $\frac{22}{\pi}>7$ and $m=7$ (since $\frac{22.5}{\pi}<8$). But at the end of the seventh inteval,
$x=14 \pi$, and $\frac{x^{2}}{2004}=\frac{49 \pi^{2}}{501}<\frac{\pi^{2}}{10}<\frac{3.15^{2}}{10}<1=\cos 14 \pi$. Hence there must be at least one more solution. There cannot be more than one in $[14 \pi, 15 \pi]$ since $\cos x$ decreases and $\frac{x^{2}}{2004}$ increases. Note also that $\frac{(15 \pi)^{2}}{2004}=\frac{225 \pi^{2}}{2004}>\frac{225 \pi^{2}}{2025}=\frac{\pi^{2}}{9}>1$, so $x \geq 15 \pi$ yields no solutions. There are a total of $2(7)+1=15$ solutions for positive x and hence 30 overall.
10. Answer: $\frac{433}{833}$

Instead of thinking about people picking cards, we will place the aces in the deck. So we assign a number between 1 and 52 to each of the aces. There are $\binom{52}{4}$ ways to do this. Now we examine what happens if the first ace is in an odd numbered slot. If the first ace is number 1 , we have $\binom{51}{3}$ possibilities for the other 3 aces. Similarly, for slot 3 we have $\binom{49}{3}$ and so forth. So the probability can be written as $\frac{\binom{51}{3}+\binom{49}{3}+\binom{47}{3}+\ldots+\binom{3}{3}}{\binom{52}{4}}$. We can put the numerator into summation form as $\sum_{n=1}^{\infty} \frac{1}{6}(2 n+1)(2 n)(2 n-1)$. This is $\frac{2 * 25^{2} * 26^{2}-25 * 26}{6}=\frac{844350}{6}=140725$. Then $\frac{140725}{\binom{52}{4}}=\frac{433}{833}$

