Calculus Solutions
 2003 Rice Math Tournament
 February 22, 2003

1. Answer: $\frac{100!}{x^{101}}$

Simply note the pattern: $f^{(n)}(x)=\frac{(-1)^{n} n!}{x^{n+1}}$.
2. Answer: $\frac{34}{3}$

The distance traveled is given by $\int_{0}^{4}|v(t)| d t$ where $|v(t)|$ is the speed function. $v(t)=\int a(t) d t=t^{2}-$ $2 t+C$. We can evaluate C with the information that $v(1)=-4 . C=-3$. The distance covered is then $\int_{0}^{4}\left|t^{2}-2 t-3\right| d t=\int_{3}^{4}\left(t^{2}-2 t-3\right) d t-\int_{0}^{3}\left(t^{2}-2 t-3\right) d t=\left[\frac{t^{3}}{3}-t^{2}-3 t\right]_{3}^{4}-\left[\frac{t^{3}}{3}-t^{2}-3 t\right]_{0}^{3}=\frac{7}{3}+9=\frac{34}{3}$.
3. Answer: $\frac{\sqrt{5}}{3}$ or $-\frac{\sqrt{5}}{3}$ (one of these is sufficient)

The Mean Value Theorem says that there exists a c in the interval $[-1,2]$ so that $f^{\prime}(c)=\frac{f(2)-f(-1)}{2+1}=\frac{5}{3}$.
Clearly, $f^{\prime}(x) \neq \frac{5}{3}$ for $x>1$. For $x \leq 1, f^{\prime}(x)=3 x^{2}$ yielding $c= \pm \frac{\sqrt{5}}{3}$.
4. Answer: - 24

The only nonzero term in $f^{\prime \prime}(x)$ after substituting in $x=3$ is the term in the product rule where we have differentiated the $(x-3)$ terms twice. Thus $f^{\prime \prime}(x)=2(3-1)(3-2)(3-4)(3-5)(3-6)=-24$. Note every term in $f^{\prime}(x)$ involves $(x-3)$ and thus $f^{\prime}(3)=f(3)=0$. Thus, $f^{\prime \prime}(3)-f^{\prime}(3)+f(3)=-24$.
5. Answer: $122.5=\frac{\mathbf{2 4 5}}{\mathbf{2}}$

We know that $f(x+h)=f(x)+f(h)+3 x h$, so

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} & =\lim _{h \rightarrow 0} \frac{f(x)+f(h)+3 x h-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(h)}{h}+3 x \\
& =3 x+7
\end{aligned}
$$

We note that this limit is exactly $f^{\prime}(x)$, so we know $f^{\prime}(x)=3 x+7$ and thus $f(x)=1.5 x^{2}+7 x$ (since $f(0)=0$), and thus $f(7)=122.5$.
6. Answer: Yes, after ln 6 hours

Given that $c^{\prime}(t)=-c(t)$, we can solve for $c(t)$ by separation of variables:

$$
\begin{aligned}
\frac{c^{\prime}}{c} & =-1 \\
\ln |c| & =-t+k_{1} \\
c & =e^{-t+k_{1}} \quad \text { (since } c \text { is always positive) } \\
c & =k_{2} e^{-t}
\end{aligned}
$$

Plugging in $t=0$, we find that $k_{2}=c(0)=2$, and therefore $c(t)=2 e^{-t}$.
Now, given that $q^{\prime}(t)=-3 c(t)$, we find that

$$
\begin{aligned}
q^{\prime} & =-6 e^{-t} \\
q & =6 e^{-t}+k_{3}
\end{aligned}
$$

Plugging in $t=0$, we see that $k_{3}=q(0)-6=1$, so $q(t)=6 e^{-t}+1$. This function does indeed decrease below 2 as t increases, and this occurs when

$$
\begin{aligned}
6 e^{-t}+1 & =2 \\
e^{-t} & =\frac{1}{6} \\
-t & =\ln \frac{1}{6} \\
t & =\ln 6
\end{aligned}
$$

Hence, Teena gets kicked out after $\ln 6$ hours.
7. Answer: $\left(x^{x} \ln x\right)\left(x^{x^{x}}\right)\left(\ln x+1+\frac{1}{x \ln x}\right)=x^{x^{(x+1)}} \ln x\left(\ln x+1+\frac{1}{x \ln x}\right)=x^{x^{(x+1)}}\left((\ln x)^{2}+\right.$ $\left.\ln x+\frac{1}{x}\right)$
Set $y=x^{x^{x}}$. Then $\ln y=x^{x} \ln x$ and $\ln \ln y=\ln x^{x} \ln x=x \ln x+\ln \ln x$. Taking the derivative implicitly yields $\frac{1}{\ln y} \cdot \frac{1}{y} \cdot y^{\prime}=\ln x+1+\frac{1}{\ln x} \cdot \frac{1}{x}$. Thus $y^{\prime}=\left(x^{x} \ln x\right)\left(x^{x^{x}}\right)\left(\ln x+1+\frac{1}{x \ln x}\right)=x^{x^{(x+1)}} \ln x(\ln x+$ $\left.1+\frac{1}{x \ln x}\right)=x^{x^{(x+1)}}\left((\ln x)^{2}+\ln x+\frac{1}{x}\right)$.
8. Answer: $(\sqrt{s}-\sqrt{x})^{2}$

Consider a fixed x_{0} with $0 \leq x_{0} \leq s$. Consider a line going from $(0, r)$ to $(s-r, 0)$ (where $\left.0 \leq s-r \leq x_{0}\right)$. The y-value of this line at x_{0} is $r \cdot\left(1-\frac{x_{0}}{s-r}\right)$. So, $f\left(x_{0}\right)$ will be equal to $\max _{0 \leq r \leq s-x_{0}} r \cdot\left(1-\frac{x_{0}}{s-r}\right)$. We let $g(r)=r \cdot\left(1-\frac{x_{0}}{s-r}\right)$ and find the maximum of this function by setting the derivative equal to 0 :

$$
\begin{aligned}
g^{\prime}(r) & =\left(1-\frac{x_{0}}{s-r}\right)+r \cdot\left(-\frac{x_{0}}{(s-r)^{2}}\right) \\
& =1-\frac{x_{0}}{s-r}-\frac{r x_{0}}{(s-r)^{2}}
\end{aligned}
$$

Setting this equal to 0 , we see:

$$
\begin{aligned}
1-\frac{x_{0}}{s-r}-\frac{r x_{0}}{(s-r)^{2}} & =0 \\
(s-r)^{2}-x_{0}(s-r)-r x_{0} & =0 \\
r^{2}-2 r s+s\left(s-x_{0}\right) & =0
\end{aligned}
$$

Solving for r, we find that $r=s \pm \sqrt{s x_{0}}$ is a solution, and since $s+\sqrt{s x_{0}}>s$, which is not allowed, then $r=s-\sqrt{s x_{0}}$ must be the maximum, which we can check by finding the second derivative.
So, we have $f\left(x_{0}\right)=g\left(s-\sqrt{s x_{0}}\right)=\left(s-\sqrt{s x_{0}}\right)\left(1-\frac{x_{0}}{\sqrt{s x_{0}}}\right)$, which reduces to $f\left(x_{0}\right)=\left(\sqrt{s}-\sqrt{x_{0}}\right)^{2}$, and thus $f(x)=(\sqrt{s}-\sqrt{x})^{2}$.
9. Answer: $\frac{\sqrt[3]{5}}{90}$ inches per sec.

The total volume of the hourglass is 480π and thus the volume of the sand is 120π. The $\frac{d v}{d t}$ of the sand is a constant, thus after $\frac{3}{4}$ of a minute, $90 \pi \mathrm{in}^{3}$ of sand is in the bottom cone. Note $\frac{d v}{d t}=2 \pi \frac{\mathrm{in}^{3}}{\mathrm{sec}}$. If h is the height of the sand in the bottom cone and r the radius of the top surface of the sand, then by similar triangles $h=5-\frac{5 r}{12}$, and the volume of the sand in the bottom is $V=240 \pi-\frac{1}{3} \pi r^{2}(5-h)=240 \pi-\frac{5 \pi r^{3}}{36}$. Setting $\frac{d v}{d t}=2 \pi$ yields $\frac{d r}{d t}=\frac{-24}{5 r^{2}}$, giving that $\frac{d h}{d t}=\frac{2}{r^{2}}$. We can solve for r when $V=90 \pi$ giving $r=6 \sqrt[3]{5}$. Thus $\frac{d h}{d t}=\frac{\sqrt[3]{5} \text { in }}{90 \text { sec }}$.
10. Answer: $\frac{5456 \pi}{3}+198 \sqrt{11} \pi-\frac{286 \sqrt{143} \pi}{3}$ cubic inches

First, Sammy removes $\frac{4}{3} \pi(10)^{3}=\frac{4000 \pi}{3}$ cubic inches from the center of the pumpkin. Next his drill removes a volume that is almost a cylinder, but is curved on the ends. To calculate these small volume changes we shall derive a general formula. Consider a circle of radius r and the region bounded by $x^{2}+y^{2}=r^{2}, x=a$, and $y=0$. If we rotate this around the x -axis, we get the extra volume on the outer edge of the cylinder. Thus the volume is $\pi \int_{a}^{r}\left(r^{2}-x^{2}\right) d x=\pi\left(\frac{2}{3} r^{3}-a r^{2}+\frac{a^{3}}{3}\right)$. For the outside of the cylinder, $r=12$ and $a=\sqrt{r^{2}-1}$. We are thus removing from the pumpkin an additional volume of $\pi\left(1152-\frac{289 \sqrt{143}}{3}\right)$. On the inner radius we are overestimating what volume we are removing by $\pi\left(\frac{2000}{3}-201 \sqrt{11}\right)$. Our initial estimate of the cylinder was $\pi(\sqrt{143}-\sqrt{99})$. Adding these numbers yields the solution of $\frac{5456 \pi}{3}+198 \sqrt{11} \pi-\frac{286 \sqrt{143} \pi}{3}$ cubic inches.

