Calculus Solutions 2003 Rice Math Tournament February 22, 2003

1. Answer: $\frac{100!}{x^{101}}$

Simply note the pattern: $f^{(n)}(x) = \frac{(-1)^n n!}{x^{n+1}}$.

2. Answer: $\frac{34}{3}$

The distance traveled is given by $\int_0^4 |v(t)| dt$ where |v(t)| is the speed function. $v(t) = \int a(t) dt = t^2 - 2t + C$. We can evaluate C with the information that v(1) = -4. C = -3. The distance covered is then $\int_0^4 |t^2 - 2t - 3| dt = \int_3^4 (t^2 - 2t - 3) dt - \int_0^3 (t^2 - 2t - 3) dt = \left[\frac{t^3}{3} - t^2 - 3t\right]_3^4 - \left[\frac{t^3}{3} - t^2 - 3t\right]_0^3 = \frac{7}{3} + 9 = \frac{34}{3}$.

3. Answer: $\frac{\sqrt{5}}{3}$ or $-\frac{\sqrt{5}}{3}$ (one of these is sufficient)

The Mean Value Theorem says that there exists a c in the interval [-1, 2] so that $f'(c) = \frac{f(2) - f(-1)}{2+1} = \frac{5}{3}$. Clearly, $f'(x) \neq \frac{5}{3}$ for x > 1. For $x \leq 1$, $f'(x) = 3x^2$ yielding $c = \pm \frac{\sqrt{5}}{3}$.

4. Answer: −24

The only nonzero term in f''(x) after substituting in x = 3 is the term in the product rule where we have differentiated the (x - 3) terms twice. Thus f''(x) = 2(3 - 1)(3 - 2)(3 - 4)(3 - 5)(3 - 6) = -24. Note every term in f'(x) involves (x - 3) and thus f'(3) = f(3) = 0. Thus, f''(3) - f'(3) + f(3) = -24.

5. Answer: $122.5 = \frac{245}{2}$

We know that f(x+h) = f(x) + f(h) + 3xh, so

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{f(x) + f(h) + 3xh - f(x)}{h}$$
$$= \lim_{h \to 0} \frac{f(h)}{h} + 3x$$
$$= 3x + 7$$

We note that this limit is exactly f'(x), so we know f'(x) = 3x + 7 and thus $f(x) = 1.5x^2 + 7x$ (since f(0) = 0), and thus f(7) = 122.5.

6. Answer: Yes, after ln 6 hours

Given that c'(t) = -c(t), we can solve for c(t) by separation of variables:

$$\frac{c'}{c} = -1$$

$$\ln |c| = -t + k_1$$

$$c = e^{-t+k_1} \text{ (since } c \text{ is always positive)}$$

$$c = k_2 e^{-t}$$

Plugging in t = 0, we find that $k_2 = c(0) = 2$, and therefore $c(t) = 2e^{-t}$. Now, given that q'(t) = -3c(t), we find that

$$q' = -6e^{-t}$$

 $q = 6e^{-t} + k_3.$

Plugging in t = 0, we see that $k_3 = q(0) - 6 = 1$, so $q(t) = 6e^{-t} + 1$. This function does indeed decrease below 2 as t increases, and this occurs when

$$6e^{-t} + 1 = 2$$

$$e^{-t} = \frac{1}{6}$$

$$-t = \ln \frac{1}{6}$$

$$t = \ln 6.$$

Hence, Teena gets kicked out after ln 6 hours.

7. Answer: $(x^x \ln x)(x^{x^x})(\ln x + 1 + \frac{1}{x \ln x}) = x^{x^{(x+1)}} \ln x(\ln x + 1 + \frac{1}{x \ln x}) = x^{x^{(x+1)}}((\ln x)^2 + \ln x + \frac{1}{x})$

Set $y = x^{x^x}$. Then $\ln y = x^x \ln x$ and $\ln \ln y = \ln x^x \ln x = x \ln x + \ln \ln x$. Taking the derivative implicitly yields $\frac{1}{\ln y} \cdot \frac{1}{y} \cdot y' = \ln x + 1 + \frac{1}{\ln x} \cdot \frac{1}{x}$. Thus $y' = (x^x \ln x)(x^{x^x})(\ln x + 1 + \frac{1}{x \ln x}) = x^{x^{(x+1)}} \ln x(\ln x + 1 + \frac{1}{x \ln x}) = x^{x^{(x+1)}}((\ln x)^2 + \ln x + \frac{1}{x})$.

8. Answer: $(\sqrt{s} - \sqrt{x})^2$

Consider a fixed x_0 with $0 \le x_0 \le s$. Consider a line going from (0, r) to (s-r, 0) (where $0 \le s-r \le x_0$). The y-value of this line at x_0 is $r \cdot \left(1 - \frac{x_0}{s-r}\right)$. So, $f(x_0)$ will be equal to $\max_{0 \le r \le s-x_0} r \cdot \left(1 - \frac{x_0}{s-r}\right)$. We let $g(r) = r \cdot \left(1 - \frac{x_0}{s-r}\right)$ and find the maximum of this function by setting the derivative equal to 0:

$$g'(r) = \left(1 - \frac{x_0}{s - r}\right) + r \cdot \left(-\frac{x_0}{(s - r)^2}\right) \\ = 1 - \frac{x_0}{s - r} - \frac{rx_0}{(s - r)^2}$$

Setting this equal to 0, we see:

$$1 - \frac{x_0}{s - r} - \frac{rx_0}{(s - r)^2} = 0$$

(s - r)² - x_0(s - r) - rx_0 = 0
r² - 2rs + s(s - x_0) = 0

Solving for r, we find that $r = s \pm \sqrt{sx_0}$ is a solution, and since $s + \sqrt{sx_0} > s$, which is not allowed, then $r = s - \sqrt{sx_0}$ must be the maximum, which we can check by finding the second derivative.

So, we have $f(x_0) = g(s - \sqrt{sx_0}) = (s - \sqrt{sx_0}) \left(1 - \frac{x_0}{\sqrt{sx_0}}\right)$, which reduces to $f(x_0) = (\sqrt{s} - \sqrt{x_0})^2$, and thus $f(x) = (\sqrt{s} - \sqrt{x})^2$.

9. Answer: $\frac{\sqrt[3]{5}}{90}$ inches per sec.

The total volume of the hourglass is 480π and thus the volume of the sand is 120π . The $\frac{dv}{dt}$ of the sand is a constant, thus after $\frac{3}{4}$ of a minute, $90\pi in^3$ of sand is in the bottom cone. Note $\frac{dv}{dt} = 2\pi \frac{in^3}{sec}$. If h is the height of the sand in the bottom cone and r the radius of the top surface of the sand, then by similar triangles $h = 5 - \frac{5r}{12}$, and the volume of the sand in the bottom is $V = 240\pi - \frac{1}{3}\pi r^2(5-h) = 240\pi - \frac{5\pi r^3}{36}$. Setting $\frac{dv}{dt} = 2\pi$ yields $\frac{dr}{dt} = \frac{-24}{5r^2}$, giving that $\frac{dh}{dt} = \frac{2}{r^2}$. We can solve for r when $V = 90\pi$ giving $r = 6\sqrt[3]{5}$. Thus $\frac{dh}{dt} = \frac{\sqrt[3]{5}}{90 \text{ sec}}$.

10. Answer: $\frac{5456\pi}{3} + 198\sqrt{11}\pi - \frac{286\sqrt{143}\pi}{3}$ cubic inches

First, Sammy removes $\frac{4}{3}\pi(10)^3 = \frac{4000\pi}{3}$ cubic inches from the center of the pumpkin. Next his drill removes a volume that is almost a cylinder, but is curved on the ends. To calculate these small volume changes we shall derive a general formula. Consider a circle of radius r and the region bounded by $x^2 + y^2 = r^2$, x = a, and y = 0. If we rotate this around the x-axis, we get the extra volume on the outer edge of the cylinder. Thus the volume is $\pi \int_a^r (r^2 - x^2) dx = \pi (\frac{2}{3}r^3 - ar^2 + \frac{a^3}{3})$. For the outside of the cylinder, r = 12 and $a = \sqrt{r^2 - 1}$. We are thus removing from the pumpkin an additional volume of $\pi(1152 - \frac{289\sqrt{143}}{3})$. On the inner radius we are overestimating what volume we are removing by $\pi(\frac{2000}{3} - 201\sqrt{11})$. Our initial estimate of the cylinder was $\pi(\sqrt{143} - \sqrt{99})$. Adding these numbers yields the solution of $\frac{5456\pi}{3} + 198\sqrt{11}\pi - \frac{286\sqrt{143}\pi}{3}$ cubic inches.