Algebra Solutions

2003 Rice Math Tournament

February 22, 2003

1. Answer: -3

If $a * b=2$, then $a^{2}+a b+3 b+1=2$, so $b(a+3)=1-a^{2}$. From this we see that if $a \neq-3$, then $b=\left(1-a^{2}\right) /(a+3)$ satisfies $a * b$. However, if $a=-3$, then for any $b, a * b=a^{2}+(a+3) b+1=a^{2}+1=10$.

2. Answer: 4

a and b are the roots of the polynomial $x^{2}-k x+k$. (There are various ways to show this. One is to multiply out $(x-a)(x-b)$, another is to substitute $b=k-a$ into the equation $a b=k$.) Using the quadratic equation, this polynomial has roots

$$
x=\frac{k \pm \sqrt{k^{2}-4 k}}{2} .
$$

These roots are real if and only if $k^{2}-4 k \geq 0$. Since $k>0$, we find that this only holds if $k \geq 4$.
3. Answer: 4

Since $p(x)$ has no complex roots, all 8 of its roots are real. Note however that the polynomial is even, i.e. symmetric about the y-axis. Thus, $P(x)$ has an equal number of positive and negative roots, meaning that it has $\frac{8}{2}=4$ negative real roots.

4. Answer: 1 and 8

Let A, B, and C be the number of galleons Harry, Hermione, and Ron have, respectively. Then the given information provides us with the following conditions:

$$
\begin{aligned}
A+B & =12 \\
A+C & =10 \\
A+B+C & =7 D, \text { where } D \text { is an integer }
\end{aligned}
$$

By adding the first two and subtracting the third, we get $A=22-7 D$. Since A, B, and C must be nonnegative, we have $A=1$ or 8 .
5. Answer: (1, 2)

Written in base 10, the equation $(11 x y)_{7}=(310 x)_{5}$ becomes

$$
\begin{aligned}
7^{3}+7^{2}+x \cdot 7^{1}+y & =3 \cdot 5^{3}+5^{2}+x \\
392+7 x+y & =400+x \\
6 x+y & =8
\end{aligned}
$$

Since x is a digit in a base 5 number, we must have $0 \leq x \leq 4$, and since y is a digit in a base 7 number, we must have $0 \leq y \leq 6$. The only solution that satisfies these constraints is $x=1, y=2$.

6. Answer: 4446

Let w be the number of white and r be the number of red. Then $r+w<100$ and and $w<10 r$. We want the number of integer coordinates (r, w) that satisfy these two inequalities. Consider the lines $r+w=100$ and $\frac{w}{r}=10$. They intersect at $\left(\frac{100}{11}, \frac{1000}{11}\right)$. To be in the desired region for $r<\frac{100}{11} \approx 9.1$, we are limited more by $w<10 r$. For $r=1$ there are 9 choices for w. For $r=2$ there are 19 choices, and so on up to $r=9$ which has 89 choices for w. Therefore for $r \leq 9$, there are $\sum_{n=1}^{9}(10 n-1)=441$. When $r \geq 10$, then w is more restricted by $w<100-r$. When $r=10$, there are 89 choices for w. When $r=11$ there are 88 choices and so on. Thus, the number of choices when $r \geq 10$ is $\sum_{n=1}^{89} n=\frac{89 \cdot 90}{2}=4005$. The total number of ordered pairs is $4005+441=4446$.

7. Answer: 14

Since r_{1}, r_{2}, and r_{3} are solutions, we know that

$$
\left(x-r_{1}\right)\left(x-r_{2}\right)\left(x-r_{3}\right)=x^{3}-2 x^{2}+4 x+10 .
$$

Plugging in $x=-2$ gives us

$$
\begin{aligned}
\left(-2-r_{1}\right)\left(-2-r_{2}\right)\left(-2-r_{3}\right) & =(-2)^{3}-2(-2)^{2}+4(-2)+10 \\
(-1)\left(r_{1}+2\right)\left(r_{2}+2\right)\left(r_{3}+2\right) & =-14 \\
\left(r_{1}+2\right)\left(r_{2}+2\right)\left(r_{3}+2\right) & =14 .
\end{aligned}
$$

8. Answer: $x=16$

First, we want to know the relationship between $\log _{2} a$ and $\log _{4} a$ for any positive number a. Let $b=\log _{4} a$. Then $a=4^{b}=2^{2 b}$, which implies that $\log _{2} a=2 b$. Therefore, $\log _{2} a=2 \log _{4} a$.
Now, let $y=\log _{4} x=\frac{\log _{2} x}{2}$. Substituting this into the equation for x, we find that $\log _{2} y+\log _{4} 2 y=2$. Noting that $\log _{2} y=2 \log _{4} y=\log _{4} y^{2}$, we then obtain

$$
\begin{aligned}
\log _{4} y^{2}+\log _{4} 2 y & =2 \\
\log _{4} 2 y \cdot y^{2} & =2 \\
2 y^{3} & =4^{2} \\
y & =2
\end{aligned}
$$

And finally, $x=4^{y}=16$.
9. Answer: $\left[\frac{3+\sqrt{17}}{4}, \frac{1+\sqrt{57}}{4}\right],\left[\frac{-1-\sqrt{57}}{4}, \frac{-3-\sqrt{17}}{4}\right]$ or $\frac{3+\sqrt{17}}{4} \leq|x| \leq \frac{1+\sqrt{57}}{4}$

Graph each of the functions. The darker curve is the left side of the inequality. We can see the graph is symmetric about the y -axis, so we may just sovle for when $x>0$. Thus $|x|=x$. Solving for equality first, we have that $4=(1+|2 x-4|)(x+1)$. First consider when $2 x-4 \geq 0$. In that case we are solving $2 x^{2}-x-7=0$ which has roots $x=\frac{1 \pm \sqrt{57}}{4}$. Remember we assumed $x>0$ so we want only the positive root. To find the other positive intersection point consider when $2 x-4<0$. In that case, $4=(1+|2 x-4|)(x+1)$ is equivalent to $2 x^{2}-3 x-1=0$, and the root we want is $x=\frac{3+\sqrt{17}}{4}$. Thus the solutions are $\left[\frac{3+\sqrt{17}}{4}, \frac{1+\sqrt{57}}{4}\right],\left[\frac{-1-\sqrt{57}}{4}, \frac{-3-\sqrt{17}}{4}\right]$ or $\frac{3+\sqrt{17}}{4} \leq|x| \leq \frac{1+\sqrt{57}}{4}$.
10. Answer: $\frac{b+\sqrt{b^{2}+4 c}}{2}$

For each positive integer n, let $r_{n}=x_{n+1} / x_{n}$. Taking the recurrence relation for x_{n+2} and dividing by x_{n+1}, we get that $\frac{x_{n+2}}{x_{n+1}}=b+c \frac{x_{n}}{x_{n+1}}$ and $r_{n+1}=b+c r_{n}^{-1}$, which is a recurrence relation for r_{n}.
Based on the given information, we know that the sequence $r_{1}, r_{2}, r_{3}, \ldots$ approaches R as n goes to ∞. Then R must be a fixed point of the recursion for r_{n}; that is, it must satisfy

$$
R=b+c R^{-1}
$$

(If R didn't satisfy this relation, then whenever the sequence r_{n} got very close to R, it would immediately jump away from R.) Therefore

$$
R^{2}-b R-c=0
$$

Using the quadratic equation, we find that

$$
R=\frac{b \pm \sqrt{b^{2}+4 c}}{2}
$$

One can easily see that x_{n} is positive for all n, and therefore r_{n} must be positive for all n as well. Therefore, R must be positive, too, meaning that the only possibility is

$$
R=\frac{b+\sqrt{b^{2}+4 c}}{2}
$$

