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Abstract

A deterministic server is shared by users with identical linear wait-
ing costs, requesting jobs of arbitrary lengths. Shortest jobs are served
…rst for e¢ciency. When the server can monitor the length of a job,
but not the identity of its user, merging, splitting or partially trans-
ferring jobs may o¤er strategic opportunities to cooperative agents.
Can we design cash transfers to neutralize such manipulations?

We prove that merge-proofness and split-proofness are not com-
patible, and that it is similarly impossible to prevent all transfers of
jobs involving three agents or more. On the other hand, robustness
against pairwise transfers is feasible, and essentially characterize a
one-dimensional set of scheduling methods. This line is borne by two
outstanding methods, the merge-proof S+ and the split-proof S¡.

Splitproofness, unlike Mergeproofness, is not compatible with sev-
eral simple tests of equity. Thus the two properties are far from equally
demanding.
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1 The problem and the punch lines
Dividing the burden of joint externalities raises many issues of incentive-
compatibility. One of these is the strategic transfer, or merging, or splitting,
of certain private characteristics of the participants. This type of manip-
ulation is discussed in the fair division literature (see details in section 2);
here we study it in a simple scheduling problem with transferable utility.
A single deterministic server/machine is shared by users with linear waiting
costs, requesting jobs of arbitrary lengths. A job of length xi takes xi units
of time to process; an agent’s disutility is the waiting time until her job is
completed, augmented by a (positive or negative) cash payment selected by
the mechanism. The key assumptions is that the server can monitor the
length of a job, but not the identity of its user. This creates opportunities
for manipulation if the agents can costlessly merge two jobs of lengths xi, xj
into a single job of length xi + xj, sent under one of their names; or if they
can split a job xi into two smaller jobs x1

i , x2
i with x1

i + x2
i = xi, and send

them under two aliases; or, …nally, if they can transfer a fraction of job xi
and add it to job xj.

The key assumption is realistic when the usage of the server/machine is
private, and can’t be traced to its actual bene…ciary. Think of a tool that
agents carry to their private workplace, for instance a software used on a
private machine. Or consider single access to a database, when the needs of
each user of the link are private, so the server cannot detect if and when the
link is used by agent i on behalf of another agent j. In huge networks such as
the internet, assuming a false identity is very easy, and an important issue of
the network design is to protect the system performance against such moves:
Douceur [2002]. On the other hand, merging, splitting or transferring jobs is
costless if the job takes the form of an electronic document, or of a physical
tool easily transported from one job to the next.

Two very simple scheduling mechanisms illustrate the cooperative ma-
nipulations that we wish to prevent. Given identical linear waiting costs and
the availability of cash transfers, e¢ciency requires to serve the shortest jobs
…rst (Smith [1956]). Suppose the server does this and performs no mone-
tary transfer (at least when all jobs are of di¤erent length, so the e¢cient
scheduling order is unique). This mechanism is highly vulnerable to splitting
maneuvers: If the two real jobs are x1 = 4, x2 = 3, agent 1 splits his job
as x01x001 = 2 and cuts his waiting cost by $3. Partial transers may also be
pro…table: say the three jobs are (x1, x2, x3) = (1, 4, 5); if agent 3 transfers 2
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units of job to agent 1, resulting in (x01, x2, x03) = (3, 4, 3), she will complete
x3 before agent 2 is served, and the net gain $4 can be divided between agents
1 and 3. But the merging of jobs is clearly not pro…table, as this can only
delay the completion of these jobs.

Consider next a mechanism serving the longest jobs …rst, namely one
that maximizes total waiting cost. No matter how it deals with ties, this
mechanism is badly vulnerable to merging maneuvers, as well as to partial
transfers: simply use the above examples backward. On the other hand, the
splitting of a job is never pro…table.

Can we design a system of cash transfers to prevent in all problems single
agents from splitting their job, and coalitions from merging them under a
single identity? And what about partial transfers of jobs?

Despite the simplicity of our scheduling model, some of the answers to
these questions are disappointingly negative. If the potential set of users
contains at least 4 agents, a mechanism treating equals equally cannot be
both merge-proof and split-proof:Theorem 1 in Section 4. Moreover every
continuous mechanism (i.e., net waiting costs depend continuously upon the
pro…le of job lengths) is vulnerable to transfers involving three agents or
more: Section 8.

On the other hand the family of merge-proof scheduling mechanisms is
fairly large, and so is that of split-proof mechanisms. Moreover, each fam-
ily contains many mechanisms invulnerable to job transfers involving only
two agents, as explained below. Yet we …nd that split-proofness, in con-
trast to merge-proofness, is incompatible with several compelling fairness
requirements. Proposition 1 in Section 5 gives a precise content to this state-
ment. Restrict attention to e¢cient mechanisms (serving successively jobs of
increasing length) treating equals equally, and continuous.Every splitproof
mechanism in this class must charge a positive fee to null jobs, who cre-
ate no externality whatsoever; it must also subsidize some jobs in the sense
that their net waiting cost is smaller then xi; next,the net cost of agent i is
not always weakly increasing in his job length xi; and …nally, the ordering
of net costs must sometime contradict that of job lengths. By contrast,
merge-proofness is compatible with all four properties just described.

In Section 6, we construct a large family of e¢cient scheduling mecha-
nisms, treating equals equally and continuous as above, and for which the
role of merge-proofness and split-proofness is especially easy to describe. Pick
a continuous function θ from R2

+ into R such that θ(a, b)+θ(b, a) = minfa, bg
for all a, b. Label the set of users N = f1, 2, .., ng in such a way that
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x1 · x2 · .. · xn. The θ-mechanism serves the job in the e¢cient or-
der 1, 2, .., n, and performs cash transfers resulting in the net waiting cost
yi = xi +

P
j 6=i θ(xi, xj) for all i. By construction of θ, this gives

P
i yi =

nx1 + (n¡ 1)x2 + ... + xn, so that these transfers are balanced.
We call the above mechanism separable because it divides the externality

minfxi, xjg between any two agents i, j without paying attention to other
job lengths. Proposition 2 in Section 6 characterizes merge-proof separable
methods by a system of inequalities slightly less demanding than the super-
additivity of θ in its …rst variable, and split-proof separable methods by a
similar system slightly more demanding than the sub-additivity of θ in its
…rst variable.

Two separable mechanisms stand out. The …rst one, called S+, splits the
(i, j)-externality equally, namely θ+(a, b) = 1

2 minfa, bg. The second mecha-
nism, called S¡, uses the function θ¡(a, b) = b¡ 1

2 maxfa, bg. The method S+

corresponds to the Shapley value of the optimistic stand alone cooperative
game (a coalition S standing alone is served before N/S ; the method S¡
corresponds to the Shapley value of the pessimistic stand alone cooperative
game (a coalition S standing alone is served after N/S).

We …nd that S+ is merge-proof, whereas S¡ is split proof - hence the
latter shares all unpalatable consequences of splitproofness discussed above.

In Section 7 we turn to the strategic transfer of jobs. We restrict atten-
tion to job transfers involving only two agents, combined with cash transfers
within a coalition of arbitrary size. We show that S+, S¡ as well as their
a¢ne combinations y = a ¢ y+ + (1 ¡ a) ¢ y¡, a 2 R, are not vulnerable to
such manipulations. Our main result, Theorem 2, is a characterization of
the line of methods borne by S+ and S¡ based on this property of pairwise
transfer-proofness. Then we characterize the S+ method either by adding
the requirement that null jobs should not pay (or receive) anything, or by
ruling out subsidies beyond the optimistic stand alone wait (xi · yi).

2 Related literature
The earliest discussion in the fair division literature of manipulation by merg-
ing, splitting, and transferring, is in the rationing problem: each agent has
a claim/liability over an amount of money smaller than the sum of individ-
ual claims/liabilities. If the claims take the form of anonymous, transferable
bonds, dividing the money in proportion to individual claims is the only
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method making transfers - as well as merging or splitting - unpro…table:
Banker [1984]. Variants and extensions of this result are in Moulin [1987],
DeFrutos [1999], and Ju [2003]. Related properties of transfer-proofness ap-
pear in the quasi-linear social choice problem (Moulin [1985] Chun [?]), in
axiomatic costsharing (Sprumont [2004]) and more: Ju and Miyagawa [2003]
o¤er a uni…ed treatment of most of this literature.

We now review the recent and growing microeconomic literature on schedul-
ing. A familiar variant of our model has linear waiting costs that may vary
across participants. A scheduling problem consists of a pro…le of job lengths
xi and waiting cost δi per unit of time. Agent i0s diutility is then δiwi + ti,
where wi is waiting time until completion of job i and ti is the cash payment.
Minimizing total waiting cost requires to serve the jobs in the increasing
order of the ratios xi

δi
(Smith [1956]).

The mechanism designer can use the cash transfers to ensure truthful
(dominant strategy) elicitation of the privately known waiting costs: utili-
ties are linear in money (and waiting costs) so that Vickrey-Clarke-Groves
mechanisms can be readily applied. The …rst authors to explore this idea are
Dolan [1978] and Mendelson and Whang [1990]. In fact, given linear waiting
costs, we can construct a budget-balanced (fully e¢cient) VCG mechanism:
Suijs [1996], Mitra and Sen [1998], Mitra [2002]. If we must elicit job lengths
instead of waiting costs, a similar construction is possible (Hain and Mitra
[2001], Kittsteiner and Moldovanu [2003a,b]), provided the VCG mechanisms
are suitably generalized to take into account the more complicated allocative
externalities from misreporting the length of one job.

Another way to use cash transfers in the linear scheduling model is to
ensure fairness, namely an equitable sharing of the congestion externality.
Several auhors simply apply o¤-the-shelve solution concepts like the Shapley
value or the core to a relevant cooperative game: Curiel et al. [1989], [1993],
[2002], Hamers et al. [1996]. The most natural soltuion is the Shapley value
of a stand alone cooperative game. This solution is axiomatized by Maniquet
[2003], in the case of identical job lengths, and also discussed by Curiel et
al. [1993] and Klijn and Sanchez [2002]. It plays an important role in the
current paper as solution S+. Our second solution S¡ is similarly axiomatized
by Chun [2004].

Our approach is original on two accounts. First we explore a new kind
of cooperative manipulation, quite di¤erent from the misreport of waiting
costs or of job lengths. In our model, individual preferences are known to the
server, and job lengths are observable. All the action comes from the inability
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of the server to detect the true identity of users: this allows participants to
request a job, or part of a job, without revealing its true bene…ciary.

Secondly we explore the compatibility of our strategy-proofness proper-
ties with four classic equity tests, based on monotonicity and bounds on
individual disutilities (see Section 5). These tests are all familiar to the fair
division literature, and play a role as well in the work of Maniquet [2003]
and Chun [2004]. Here they reveal a fundamental asymmetry between the
requirements of merge-proofness and split-proofness (Proposition 1).

In related work in progress, Maniquet and Moulin [2004] explore split-
ting, merging and transferring maneuvers in the model with variable job
length and waiting costs described above. The methods S+, S¡ generalize,
and share similar robustness properties. Finally Moulin [2004] discusses the
same strategic maneuvers when the server instead of cash transfers, uses
randomization. In that context, the properties of merge-proofness and split-
proofness are compatible, yet the latter remains a much more demanding
property than the former.

3 The model
The set N contains all potential users of the simple machine. It may be …nite
or in…nite. A scheduling problem involves a …nite subset N of N . Agenti’s
job is completed in exactly xi units of machine-time. Given a scheduling
problem (N, x), where x 2 RN

+ , the mechanism designer - thereafter "the
server" - must choose the ordering σ of N - the schedule - in which the
jobs will be served, and a vector t, t 2 RN , of monetary transfers such thatP

N ti = 0.
Each agent incurs a waiting cost of $1 per unit of time, until completion

of his/her job (a partially completed job is useless). The equality of waiting
costs is a simplifying assumption. several of our results are preserved when
we allow arbitrary linear waiting costs, known to the server: see maniquet
and moulin [2004].

We write σ(i) < σ(j) to mean that agent i precedes agent j in t he
ordering σ, and P (i, σ) = fj 2 N/σ(j) < σ(i)g is the set of agents preceding
i in σ. Thus the disutility of agent i given σ and t is

yi = xi +
X

P(i,σ)

xj + ti (1)
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Notice that ti is a tax on agent i when ti > 0 and a subsidy when ti < 0.
Because monetary transfers are unrestricted, e¢ciency amounts to choose

an ordering σ minimizing total waiting cost
X

N

(xi +
X

P (i,σ)

xj) = xN +
X

(i,j):σ(i)<σ(j)

xi

An ordering is e¢cient if and only if it schedules shortest jobs …rst. In other
words their set E(N, x) is characterized by

σ 2 E(N, x) () fforall i, j 2 N : xi < xj =) σ(i) < σ(j)g

We use the notations a ^ b = minfa, bg and N (2) for the set of all subsets
(non-ordered pairs) (i, j) of distinct agents. Then the minimal total waiting
cost v(N, x) can be written as

v(N, x) = xN +
X

N(2)

xi ^ xj

De…nition 1 Given N, a scheduling mechanism µ associates to every
problem (N, x), where N ½ N and x 2 RN

+ , a pair µ(N, x) = (σ, t), where σ is
an ordering of N and t 2 RN with tN = 0. A scheduling method m associates
to every problem (N, x) a pro…le of net waiting costs m(N, x) = y, y 2 RN ,
such that

yN = xN +
X

(i,j):σ(i)<σ(j)

xi, for some ordering σ of N.

To each mechanism π, we associate a method x ! y by formula (1). We call
the mechanism µ e¢cient if σ 2 E(N, x) for all N, x; we call the method m
e¢cient if yN = v(N, x) for all N, x. To an e¢cient method m corresponds
essentially a unique e¢cient mechanism µ : the only quali…cation is at those
problems x where some jobs have equal length, xi = xj, so that E(N, x)
is not a singleton. As this will cause no confusion, we shall state some of
our axioms for mechanisms (e.g. Merge-proofness) and some of them for
methods.

The next property is the standard requirement of horizontal equity:

Equal Treatment of Equals (ETE):
for all (N, x), i, j 2 N : xi = xj =) yi = yj
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All methods discussed below meet ETE, yet this property is not necessary
to our main characterization result (Theorem 2). By contrast, the following
axiom plays a key role in Theorem 2.

Continuity (CONT):
for all N, the mapping x ! y(N, x) is continuous on RN

+

Continuity ensures that microscopic variations in the job lengths do not have
a macroscopic impact on the pro…le of net waiting costs. In particular when
xi = xj, a small tremble of xi - the result of a measurement error, or of a
strategic move - is not a matter of concern to agents i, j, or to anyone else.

Our …rst example is a natural and discontinuous mechanism.
Example 1 Shortest job …rst

For every (N, x) where xi 6= xj for all i, j, the mechanism selects the unique
e¢cient ordering σ and performs no transfers. At other pro…les, it performs
the minimal transfers required by ETE. If at x we have exactly k agents with
xi = a for some a, it orders them arbitrarily, say i1 < i2 < ... < ik, and
performs the transfers

ti1 =
k ¡ 1
2

a, ti2 =
k ¡ 3
2

a, ...tik = ¡(k ¡ 1)
2

a

In other words, the mechanism is de…ned up to a tie-breaking rule, but the
corresponding method is unique:

yi1 = yi2 = ... = yik =
k +1
2

a +
X

j:xj<a

xj

It is easy to de…ne e¢cient scheduling methods meeting ETE and CONT.
For instance, the proportional method:

yi =
xi

xN
¢ v(N, x) for all x 6= 0; y = 0 for x = 0 (2)

and the egalitarian method:

yi = xi +
1
n
(
X

N(2)

xi ^ xj) for all N, x (3)

The latter charges the same net cost to every agent beyond his/her own
stand alone cost. Both methods are reasonable in terms of the four criteria
discussed in Section 5, yet they are vulnerable to the coalitional maneuvers
to which we now turn.
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4 Merging and Splitting
The server can recognize the length of the jobs it performs, but not the
identity of the bene…ciary of those jobs. This allows agents to merge several
jobs under a single identity, or to split a given job in several small jobs under
multiple identities.

Given N µ N , a coalition S , S µ N, and an agent i¤ 2 S , we associate
to every problem (N, x) the (S, i¤) - merged problem (N¤, x¤) as follows

N¤ = (NnS)[ fi¤);x¤i¤ = xS and x¤j = xj for all j 2 N nS

We also use the notation v(S, x) = xS +
P

S(2)xi ^ xj for the stand alone
waiting cost of coalition S , namely the e¢cient total wait of S when it is
served before N nS. Given a mechanism µ on N we de…ne:

Merge-proofness (MPF)
for all N,S, i¤ as above and all x 2 RN :

µ(N¤, x¤) = (σ¤, t¤) ) yS(N, x) · v(S, x) + jS 0j ¢ xP (i¤,σ¤) + t¤i¤ (4)

where S 0is the subset of S de…ned by xi > 0.

In this inequality the left-hand side is the net waiting cost of coalition S
before merging, and the right-hand side its net cost after merging. Indeed
coalition S uses e¢ciently the slot of length xS allocated to agent i¤, and
moreover everyone in S with a non null job must wait until completion of all
jobs in P (i¤, σ¤).Note that for S = N, the merge-proofness inequality is just
the e¢ciency property.

Given N µ N , i¤ 2 N, and a …nite set T µ N , T \ N = ?, we associate
to every problem (N, x), the family of (T, i¤)¡splitted problems (N¤, x¤) as
follows

N¤ = N [ T ; (x¤)T[i¤ = xi¤ and (x¤)j = xj for all j 2 NÂi¤

Given a mechanism µ on N we de…ne:

Split-proofness (SPF)
for all N, T, i¤ as above, all x 2 RN and all (T, i¤)-splitted problem (N¤, x¤)

µ(N¤, x¤) = (σ¤, t¤) ) yi¤ (N, x) · xi¤ + xP (j¤,σ¤) + (t¤)T[i¤ (5)

where j¤ is the last agent in T [ i¤ for σ¤.
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Agent i0¤ net cost before splitting is on the left-hand side; after the split, i¤
must wait until all jobs in P (j¤, σ¤) are completed1, therefore his net cost is
on the right-hand side.

As discussed in the Introduction, Shortest Job First is not split-proof,
but it is merge-proof. Symmetrically, Longest Job First is split-proof, but
not merge-proof.

We check now that the egalitarian method (3) is neither merge-proof nor
split-proof. In the problem N = f1, 2, 3g, x = (1, 1, 4), consider the split
of x3 into x¤3 and x¤4, with x¤3 = x¤4 = 2. The actual wait of agent 3 in
(N, x) is the same as in N¤ = f1, 2, 3, 4g, x¤ = (1, 1, 2, 2)¡ under the assumed
identities - and the monetary transfer is smaller in the latter, hence the split
is pro…table:

y3 = 6 + t3 = 4 +
1
3
(1 + 1 + 1) ) t3 = ¡1

(y¤)34 = 4+ 6+ (t¤)34 = 2(2 +
1
4
(7)) ) (t¤)34 = ¡2.5

In the problem N = f1¤, 2, 3, 4g, x = (2, 2, 5, 5), consider the merging of
x1¤and x2. The actual total wait of agents 1,2 in (N, x) is unchanged as they
merge into 1¤ in N¤ = f1¤, 3, 4g, x¤ = (4, 5, 5). And the net transfer decreases,
making the move pro…table:

y1¤2 = 6+ t12 = 2(2 +
1
4
(15)) ) t12 = 5.5

y¤1¤ = 4+ t¤1¤ = 4+ 1
3
(13) ) t¤1¤ = 4.33

We let the reader check similarly that the proportional method (2) is not split-
proof, by considering the split of agent 1 from (f1, 2g, (5, 4) into (f1, 2, 3g, (5, 2, 2)).
On the other hand, the proportional method is merge-proof. We omit the
easy proof.

Theorem 1 Assume jN j ¸ 4. There is no scheduling mechanism satisfy-
ing Merge-proofness, Split-proofness, and either Continuity or Equal Treat-
ment of Equals.
The proof is in the Appendix. Recall that merge-proofness implies in par-
ticular e¢ciency. If we restrict the merge-proofness property by allowing

1At least if (x¤)j¤ > 0. If (x¤ )j¤ = 0, we should replace j¤ by the last agent in T [ i¤
with a positive job. But this does not a¤ect the statement of SPF.
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only the merging of proper coalitions, then there may exist some (ine¢cient)
mechanisms meeting MPF and SPF. I conjecture that this is not the case.

5 Unpalatable consequences of Split-proofness
The formal similarity between the two maneuvers of merging and splitting
suggests that the properties MPF and SPF are comparably demanding. This
intuition is not correct. We list below four mild normative requirements that
we may want to impose on a scheduling method. Then we show that any "rea-
sonable" split-proof method must violate each one of these four properties.
In the following statements, we …x a method (N, x) ! y :

Monotonicity (MON)
for all N, i 2 N, x¡i 2 RNni : xi ! yi(N, x) is non-decreasing

Ranking (RKG)
for all N, i, j 2 N, x 2 RN : fxi · xjg ) fyi · yjg

Stand Alone bound (SAB)
for all N, i 2 N, x 2 RN : yi ¸ xi

Zero Charge for Null Jobs (ZCNJ)
for all N, i 2 N, x 2 RN : xi = 0 ) yi = 0

The …rst two properties are standard equity tests. The Stand Alone bound
sets a minimal net waiting cost, namely my disutility in the most optimistic
case where I have absolute priority for service. It rules out the subsidization
of any agent beyond this most advantageous situation. Monotonicity says
that my net waiting cost weakly increases when my job becomes longer:
besides its clear normative meaning, this property also rules out "sabotage"
by arti…cially increasing one’s job length. Ranking conveys a related idea
by way of interpersonal comparisons: if my job is longer than yours, my
responsibility in the total waiting burden is higher.

Finally, ZCNJ frees a "null job" agent of any responsibility: such an agent
is served …rst by e¢ciency, and causes no additional waiting cost to any one.
Under ZCNJ, he is not taxed either, ti = 0. The combination of Continuity
and ZCNJ implies that yi converges to zero with xi.

Many scheduling methods meet these four properties. Examples include
Shortest Job First (example 1), the proportional method (2), their convex
combinations and much more. The egalitarian method (3) fails ZCNJ and
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meets the other three. We now state a negative result about split-proof
scheduling methods.

Proposition 1 Fix N and an e¢cient and continous scheduling method
treating equals equally. If this method is split-proof and N ¸ 5 then it fails
Monotonicity, Ranking and the Stand Alone bound. If jN j ¸ 1, it fails Zero
Charge for Null Jobs as well.
Note that we construct in the next section an e¢cient merge-proof method
meeting all the other axioms listed here: ETE, CONT, MON, RKG, SAB
and ZCNJ.

Proof of Proposition 1
Monotonicity. Let N = f1, 2, 3, 4g and x(ε) = (1, 1, 1, 2(1 + ε)). Consider
the split of agent 4 into agents 4,5 and x¤(ε) = (1, 1, 1, 1+ε, 1+ε).By CONT
and ETE:

lim
ε!0

y(x¤(ε)) = y(x¤(0)) = (3, 3, 3, 3, 3)

By e¢ciency and CONT again:

y45(x¤(ε)) = (4 + ε) + (5 + ε) + t45(x¤(ε)) ! lim
ε!0

t45(x¤(ε)) = ¡3

Because the split is not pro…table for agent 4, and her real wait after the
split is unchanged, we have

y4(x¤(ε)) · 5 + 2ε + t45(x¤(ε)) ) y4(x(0)) · 2

On the other hand, at x = (1, 1, 1, 1) ETE gives y4(x) = 2.5, and we see that
Monotonicity is violated as x4 goes from 1 to 2.
Ranking. Let N = f1, 2, 3g and x(ε) = (1, 1, 2(1 + ε)). Consider the split of
agent 3 into 3,4 and x¤(ε) = (1, 1, 1 + ε, 1 + ε). Mimicking the argument of
the proof above we get successively

lim
ε!0

y(x¤(ε)) = (2.5, 2.5, 2.5, 2.5), lim
ε!0

t34(x¤(ε)) = ¡2, and y3(x(0)) · 2

Now e¢ciency and ETE give y1(x(0)) = y2(x(0)) ¸ 2.5, a contradiction of
RKG.
Stand Alone bound. Let N = f1, 2gand x(ε) = (1, 3(1 + ε)). Consider the
split of agent 2 into 2,3,4 and x¤(ε) = (1, 1+ε, 1+ε, 1+ε).As before we have
successively

lim
ε!0

y(x¤(ε)) = (2.5, 2.5, 2.5, 2.5), lim
ε!0

t234(x¤(ε)) = ¡1.5,

) y2(x(0)) · 2.5 < 2 = x2(0)
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This contradicts SAB.
Zero Charge Null Jobs. Let N = f1, 2g and …x an integer p, p ¸ 2. Set x(ε) =
(1p , 1 + pε) and consider the split of 2 into 2, 3, ..., p +1 and x¤(ε) = ( 1p,

1
p +

ε, ...1p+ε). As before we have limε!0 y(x¤(ε)) = p+2
2p implying limε!0 t1(x¤(ε)) =

1
2 . Then split-proofness implies y2(x¤(ε)) · 1

p + 1 + pε ¡ t1(x¤(ε)) hence
y2(x(0)) · 1

2 + 1
p () y1(x(0)) ¸ 1

2 + 1
p. But CONT and ZCNJ imply

limp!1 y1(( 1p, 1)) = 0, contradiction.
Remark 1 For the statements about Ranking and the Stand Alone

bound, the assumption Equal Treatment of Equals is redundant. In other
words, any e¢cient, continous and split-proof method must violate Ranking
and the Stand Alone bound for jN j ¸ 4. To check this, take a set N¤ with
four agents. Setting x¤(0) = (1, 1, 1, 1), we have yN¤(x¤(0)) = 10 thus there
exists a pair i, j in N¤ such that yij((1, 1, 1, 1)) · 5. Label the agents so that
i = 3, j = 4 and N¤ = f1, 2, 3, 4g. De…ne as in the proof about Ranking
N = f1, 2, 3g, x(ε) and x¤(ε). CONT ensures limε!0 y34(x¤(ε)) · 5, then
limε!0 t34(x¤(ε)) · ¡2, and split-proofness gives y3(x(0)) · 2. Therefore
y12(x(0)) ¸ 5 so that yi(x(0)) ¸ 2.5 for at least one of 1,2. Thus ranking
fails. The similar proof about SAB is omitted for brevity.

Whether or not we can drop ETE from the assumptions on our method
in the two remaining statements is an open question.

6 Separable scheduling methods
The total waiting externality in the problem (N, x) is v(N, x) = xN +P

N(2)xi ^ xj, namely the cost of having to share the server. A separable
method shares each pairwise externality xi ^ xj independently of the rest of
the jobs.

De…nition 1 Choose a continuous function θ from R2
+ into R such that

θ(a, b) + θ(b, a) = a ^ b for all a, b 2 R+. The θ-separable scheduling method
is given by

yi(N, x) = xi +
X

Nni
θ(xi, xj) for all N, i 2 N and x 2 RN

+

Notice that the θ-separable method places no restriction on the set of agents
N, or on N . It is obviously e¢cient and continous, and treats equals equally.
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The Shortest Job First method is θ-separable, except that the function θ is
not continuous:

θ(a, b) = 0 if a < b; =
a
2

if a = b; = a if a > b

Neither the egalitarian nor the proportional method is separable.
We speak of a θ¡separable mechanism for any mechanism generating the

method in De…nition 1.
Proposition 2 The θ-separable scheduling method meets

i) Monotonicity , fθ(a, b) is non-decreasing in ag.
ii) Ranking , fθ(a, b) is non-decreasing in a and [a, b =) θ(a, b) · b

2]g.
iii) Stand Alone Bound , fθ(a, b) ¸ 0 for all a, bg.
iv) Zero Charge for Null Job , fθ(0, b) = 0 for all bg.
A θ-separable mechanism is merge-proof if and only if

θ(a1, b) + θ(a2, b) · θ(a1 + a2, b) for all b, a1, a2 s.t.a1 + a2 · b (6)
θ(a1, b) + θ(a2, b) · θ(a1 + a2, b) + b for all b, a1, a2

A θ-separable mechanism is split-proof if and only if

θ(a1 + a2, b) + b · θ(a1, b) + θ(a2, b) for all b, a1, a2s.t.b · a1, a2 (7)
θ(a1 + a2, b) · θ(a1, b) + θ(a2, b) for all b, a1, a2 (8)

Proof of Proposition 2
Statement i. Suppose θ(a, b) > θ(a0b) for some a < a0. Fix n and consider
the (n + 1)¡agents pro…les x = (a, b, ...b) and x0 = (a0, b, .., b). For n large
enough, we have

y1(x) = a + n ¢ θ(a, b) > a0 + n ¢ θ(a0, b) = y1(x0)

contradicting MON. The converse statement is obvious.
Statement ii. Suppose θ(a, b) > θ(a0, b) for some a < a0. Consider the
(n + 2)¡agents pro…le x = (a, a0, b, ...b). For n large enough we get y1 > y2,
contradicting Ranking. Thus θ must be monotonic in its …rst variable. Next
we …x a, b, a · b, and apply Ranking to x = (a, b) :

y1(x) = a + θ(a, b) · y2(x) = b + θ(b, a) = b + a ¡ θ(a, b)
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establishing the second property in statement ii. The converse property is
just as easy.
3).We turn to the characterization of Merge-proofness. Fix N,S, i¤, x as in
the premises of (4) and develop this inequality for our θ¡separable method.
Compute …rst t¤i¤ :

yi¤(N¤, x¤) = x¤i¤ + x¤P (i¤,σ¤) + t¤i¤ = x¤i¤ +
X

NnS
θ(x¤i¤ , xj)

=) t¤i¤ = ¡xP (i¤,σ¤) +
X

NnS
θ(xS, xj)

Next the de…nition of θ implies

yS (N, x) = xS +
X

S(2)

fθ(xi, xj) + θ(xj, xi)g+
X

i2S,j2NnS
θ(xi, xj)

= v(S, x) +
X

j2NnS

X

i2S

θ(xi, xj)

Therefore inequality (4) amounts to

0 · (jS0j ¡ 1) ¢ xP (i¤,σ¤) +
X

j2NnS
fθ(xS , xj) ¡

X

S

θ(xi, xj)g (9)

We prove now that if θ satis…es (6), then (8) holds for all N,S, i¤ and x. The
top inequality in (6) implies θ(0, b) · 0. Repeated applications of the bottom
one give X

S

θ(xi, b) · θ(xS, b) + (jS 0j ¡ 1) ¢ b, and

X

S

θ(xi, b) · θ(xS, b) if xS · b

Applying the top inequality to b = xj for all j 2 P (i¤, σ¤), and the bottom
one to xj for all j 2 Nn(S [ P (i¤, σ¤)) gives the desired inequality (8).
Next we prove that (6) must hold if θ meets (8) for all problems and all
merging. Consider N = f1, 2, 3g, S = f1, 2g, i¤ = 1 and x = (a1, a2, b) for
arbitrary ai, b in R+. If a1 + a2 < b, P (i¤, σ¤) is empty and (8) yields the
top inequality in (6). Continuity of θ takes care of the case a1 + a2 = b.If
a1 + a2 > b, P (i¤, σ¤) = f3g and (8) gives the bottom inequality in (6).
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4) Finally we consider Split-proofness, de…ned by the inequality (5), that
we develop similarly for the θ-separable method. First we compute (t¤)T[i¤
in (5). Set T [ i¤ = R and jRj = r, then label exi, i 2 R, in such a way
that ex1 ¸ ex2 ¸ ... ¸ exr. Thus xi¤ =

Pr
1 exk. In the split problem (N¤, x¤),

the total wait of coalition R is v(R, x¤) +
Pr

k=1 k ¢ xSk where Sk contains
those agents in Nni¤ ranked before k and after k + 1 in σ¤. In particular for
j 2 Sk, exk ¸ xj ¸ exk+1. We are ready to compute (t¤)R

yR(N¤, x¤) = v(R, x¤) +
rX

1

k ¢ xSk + (t¤)R

= v(R, x¤) +
X

j2Nni¤

X

i2R

θ(xi, xj)

Therefore the split-proofness inequality (5) writes as

xi¤ +
X

j2Nni¤
θ(xi¤ , xj) · xi¤ +

rX

1

xSk + (t¤)R

()
X

Nni¤
θ(xi¤, xj) +

rX

1

(k ¡ 1) ¢ xSk ·
X

Nni¤

rX

s=1

θ(exs, xj) (10)

We show …nally that (7) is true if and only if (9) holds for all N, i¤, T and
x. The "if" statement follows easily from applying (9) to N = f1, 2g, i¤ =
2, T = f3g, x = (b, a1+a2) and x¤ = (b, a1, a2). If b · a1, a2 we have S2 = f1g
and we get the top inequality in (7). For other values of b, S2 is empty and
we get the rest of (7).

Before proving the "only if" statement, we notice a consequence of (7).
Fix k, ak, k = 1, .., r, such that a1 ¸ a2 ¸ .... ¸ ar, and b. We have

b · ak =) θ(a1 + ..+ ar, b) + (k ¡ 1) ¢ b ·
rX

s=1

θ(as, b)

We omit the easy proof. Apply this inequality to ak = exk and to b = xj for
some agent j in Sk, we get

θ(xi¤, xj) + (k ¡ 1) ¢ xj ·
rX

1

θ(exs, xj)
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Summing up over all j 2 Nni¤ gives the desired inequality.
Proposition 2 shows that among separable scheduling methods, it is easy

to ensure merge-proofness or split-proofness. The former requires θ to be
something less than superadditive in its …rst variable; the latter requires θ
to be something more than subadditive in its …rst variable. The two re-
quirements are incompatible: this results from Theorem 1, or can be checked
directly by comparing systems (6) and (7).

Two separable methods stand out for the simplicity of their de…nition
and their multiple interpretations. Moreover, they are the backbone of the
characterization of transferproof methods in the next section.

De…nition 2 The S+ and S¡ separable methods are associated with θ+

and θ¡ respectively.

θ+(a, b) =
1
2
(a ^ b); θ¡(a, b) = b ¡ 1

2
(a _ b) for all a, b

The corresponding net waiting costs and transfers for a problem (N, x) with
jN j = n and x1 · x2 · ... · xn are:

y+i = 1
2
xf1,i¡1g + (1 + n ¡ i

2
)xi and t+i = 1

2
((n ¡ i)xi ¡ xf1,i¡1g)

y¡i = xf1,i¡1g ¡ (
i ¡ 3
2

)xi +
1
2
xfi+1,ng and t¡i =

1
2
(xfi+1,ng ¡ (i ¡ 1)xi)

where we use the notation xfi,jg =
P

i·k·j xk.
The computation of the net waiting costs and transfers from θ+, θ¡ and
De…nition 1 is straightforward.

The S+ method divides equally the externality xi ^xj between xi and xj.
If xi < xj, agent i is served …rst and gets a "rebate" 1

2xi from agent j. But
with the S¡ method, agent i gets a larger rebate 1

2xj.
Notice that for jN j = 2, S¡ simply equalizes net costs y¡1 = y¡2 = x1+ 1

2x2,
a fairly reasonable compromise. But for larger sizes of N , the method S¡
has several unappealing features.

Proposition 3
i) The scheduling method S+ is merge-proof. It also satis…es Monotonicity,
Ranking, Stand Alone Bound and Zero Charge for Null Jobs.
ii) The scheduling method S¡ is split-proof. hence it violates MON, RKG,
SAB, and ZCNJ.

Proof of Proposition 3
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That S+ meets the four properties MON, RKG, SAB and ZCNJ is obvious,
either by direct inspection of the formula for y+i , or by invoking Proposition
2. Similarly, Proposition 1 and splitproofness imply that S¡ violates all four
properties; this fact can also be checked directly on the formula for y¡i , or by
invoking Proposition 2. In particular S¡ has the following "anti-ranking"
property: xi · xj =) yi ¸ yj.
Next one checks easily that the function θ+ has the subadditivity proper-
ties (6), whereas θ¡ has the superadditivity properties (7), and the proof is
complete.

We conclude this section with a few alternative interpretations of S+ and
S¡.

Lemma 1 The pro…le of net costs selected by the method S+ is the Shap-
ley value of the optimistic Stand Alone cooperative game S ! v(S, x) for all
S µ N. T he pro…le selected by the method S¡ is the Shapley value of the
pessimistic stand alone game S ! w(S, x) = jS j ¢ xNnS + v(S, x).
In the optimistic (resp. pessimistic) Stand Alone game, the total cost of
a coalition S is its e¢cient cost when it is served before (resp. after) the
complement coalition NÂS..

Proof of Lemma 1. The interpretation of S+ as the Shapley value of the
optimistic game is already in Curiel et al [2002]. For the sake of complete-
ness, we give a proof here. Given N,S µ N and i 2 NnS, the marginal
contribution of agent i to S is

v(S [ i, x) ¡ v(S, x) = xi +
X

j2S

xi ^ xj

Therefore the (i, j)¡externality xi ^ xj is charged to agent i if and only if j
appears before i in the random ordering of N : this happens with probability
.5, so the Shapley value awards precisely y+i to agent i.

Next we check that y¡ is the Shapley value of the game w. By additivity
of the value this amounts to check that y¡ ¡ y+ is the value of the game
α = w ¡ v. Compute:

y¡i ¡ y+i =
1
2xN ¡ n

2xi and α(S [ i, x) ¡α(S, x) = xNnSni ¡ sxi

from which the desired conclusion follows easily.
Remark 2 Yet another interpretation of S+ is by means of the serial

cost sharing formula of Friedman and Moulin [1999]. Consider the scheduling

18



problem (N, x) as a cost sharing problem with the demand pro…le x and the
cost function C(x) = v(N, x). One checks easily that y+ is the pro…le of cost
shares under the serial cost sharing formula de…ned there. Finally, we note
that under S+, the transfer t+i to agent i does not depend upon the length of
jobs longer than xi; whereas under S¡, t¡i is independent of the length of jobs
shorter than xi. In combination with e¢ciency and equal treatment of equals,
these properties are clearly characteristic. In the related scheduling model
where all jobs are of equal length but agents di¤er by their linear waiting
cost, Maniquet [2003] and Chun [2004] use similar independence properties
to characterize respectively the analog of our S+ and S¡ scheduling methods.

7 Transfer of jobs and the main result
We consider a manipulation related to merging and splitting, yet more subtle
because it involves a partial transfer of jobs. The number of agents remains
constant during the transfer, therefore in this section we may assume N = N .

Our main result (Theorem 2 below) characterizes the scheduling mech-
anisms robust against partial transfers of jobs involving only two agents,
together with monetary transfers among possibly more agents. This restric-
tion is crucial. In Section 8 we derive an impossibility result when transfers
among three agents or more are feasible.

Given N, x, i, j 2 N and ε > 0, we call x0 an ε¡shrink of x by i, j if xi · xj
and (x0i, x0j) = (xi + ε, xj ¡ ε) or if xi ¸ xj and (x0i, x0j) = (xi ¡ ε, xj + ε). We
call x0 an ε¡spread of x by i, j if xi · xj and (x0i, x0j) = (xi ¡ ε, xj + ε) or if
xi ¸ xj and (x0i, x0j) = (xi + ε, xj ¡ ε). Finally the notation ¢(σ; i, j) stands
for the set of agents in N that ordering σ ranks between i and j.

We are now ready to de…ne the two sides of the transfer-proofness axiom.
Throughout these de…nitions we …x the set N of agents, jN j ¸ 3.
Pairwise Shrink proofness: for all S, S ½ N, x, x0 2 RN

+, and ε¡shrink x0 of
x by i, j 2 S

yS(N, x) · yS(N, x0) ¡ ε (11)

Pairwise Spread-proofness: for all S,S ½ N, x, x0 2 RN
+ ,and ε¡spread x0 of x

by i, j 2 S

σ0 = µ(N, x0) ) yS(N, x) · yS(N, x0) + ε + x¢(σ0;i,j) (12)
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De…nition 3 We call the mechanism µ pairwise transferproof (PTP) if it
is pairwise shrinkproof and spreadproof.

Several comments on this de…nition are in order. Firstly, the PTP concept
applies to scheduling mechanisms because the choice of σ 0 = µ(N, x0) matters
to the spreadproofness property (but not to that of pairwise shrinkproofness).

The second observation is that PTP rules out certain maneuvers by coali-
tions S of arbitrary size: although the partial transfer of jobs only concerns
two agents, other agents in S are involved in a redistribution of money inside
S.

Next we comment on the inequality de…ning shrinkproofness. The left-
hand side is the total net cost of coalition S before the (job and cash)
transfers. We claim that the right-hand side is its total net cost after
the job transfer. Without loss of generality, suppose i = 1, j = 2 and
x01 = x1 + ε · x2 ¡ ε = x02. The real job x1 will be completed whenever
x01 is served, and job x2 when x02 is served. If a reported job x01 or x02 is served
after some agent j, j 6= 1, 2, so does the corresponding real job, and vice-
versa. Thus the di¤erence between the waiting time of the real jobs x1, x2,
and that of the reported jobs x1, x2 is 2x1 + x2 ¡ (2x01 + x02) = ¡ε. Hence
inequality (10).

For instance, we check that the proportional mechanism is not pairwise
shrinkproof. Let N = f1, 2, 3g,x = (1, 6, 5) and S = f1, 2g with x01 = 3, x02 =
4. Thus x0 is a 2-shrink of x by 1, 2, involving no other agents. Compute

y12(x) =
7
12

¢ (10) >
7
12

¢ (22) ¡ 2 = y12(x0) ¡ ε

Recall that this method is in fact merge-proof. We let the reader check that
the egalitarian method also fails (10) for the following three-person example:

x = (1, 8, 2), x0 = (4, 5, 2) ) y12(x) = 11
2
3
, y12(x0) = 14

1
3

Finally we explain inequality (11). Suppose as before i = 1, j = 2, x01 =
x1 ¡ ε, x02 = x2 + 5, x1 · x2. After the report, the real job x1 will not be
completed when job x01 is done, but only during the service of job x02. Thus
the di¤erence between the wait of the real jobs and that of the reported jobs
is

2x1 + x2+ x¢(σ0;1,2) ¡ (2x01 + x02) = ε + x¢(σ0;1,2)
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If the set ¢(σ 0; 1, 2) is not empty, a spread from x to x0 introduces the
additional waiting time x¢(σ0 ;1,2) to the reported waiting time of S at x0. Thus
pairwise spread-proofness ends up being easier to meet than pairwise shrink-
proofness. For instance, all three methods Shortest Job First, proportional
and egalitarian are spread-proof. For an example where this property is
violated, consider the following θ¡separable method:

θ(a, b) =
ab

a + b
if a · b; =

b2

a+ b
if b · a

Set N = f1, 2, 3g and x = (1, 2, 3). Consider the ε¡spread by f1, 2g to
x0 = (1 ¡ ε, 2 + ε, 3) with 0 < ε < 1. Inequality (11) for S = f1, 2g reads

y12(x) = 4 + θ(1, 3) + θ(2, 3) · 4 + θ(1 ¡ ε, 3) + θ(2 + ε, 3) = y12(x0) + ε

It is violated because θ(a, b) is strictly concave in a on [0, b].
One last remark about our de…nition 3. We do not allow pairwise transfers

exchanging the ordering of jobs 1 and 2, as when x1, x2 with x1 < x2 becomes
x01, x02 with x1 · x02 · x01 · x2 and x01 + x02 = x1 + x2 . This restriction is
without any real loss of generality, because the deviating agents have every
incentive to use e¢ciently the time slots allocated to their reported jobs. In
the con…guration above, the slot for x02 will be used to complete job x1 and
start job x2. Therefore the shift from x to x0 is equivalent to a shrink from
(x1, x2) to (x02, x01).

We are ready to state our main characterization result.
Theorem 2 Fix N with jN j ¸ 4.

i) Choose two continuous functions, α : R+ ! R and γ : R+ ! RN such thatP
N γi(z) = 0 for all z. The following equality de…nes a scheduling method

y:

y(x) = α(xN) ¢ y+(x) + (1 ¡ α(xN)) ¢ y¡(x) + γ(xN) for all x 2 RN
+

where y+, y¡ correspond to S+ and S¡ as in De…nition 2. Any corresponding
mechanism is e¢cient, continuous, and pairwise transfer-proof.
ii) Conversely, if a mechanism µ is e¢cient, continuous and pairwise trans-
ferproof, the associated method y takes the above form.
The PTP axiom, almost single handedly, captures a fairly small family of
scheduling methods/mechanisms. This family contains the a¢ne combina-
tions of S+, S¡ to which we can add some "constant" γ, where the coe¢cients
of the a¢ne combination and the "constant" depend only upon xN .

21



Corollary 1 to Theorem 2 Consider a mechanism µ de…ned as in
statement i) by the functions α and γ :
i) µ treats equals equally if and only if γ(z) = 0 for all z.
ii) µ is scale invariant if and only if α is constant in R and γ is homogeneous
of degree 1.

Scale Invariance (SI): y(λx) = λy(x) for all λ > 0, x 2 RN
+

If we combine the mild properties CONT, ETE and SI with e¢ciency and
PTP, Corollary 1 tells us that we are left with the one-dimensional line of
methods joining S+ and S¡These methods are all separable, with correspond-
ing function θ :

θ(a, b) =
1
2
(a ^ b)¡ (1¡ α)

2
(a ¡ b) for all a, b ¸ 0

The parameter α is any real number. The method S+ obtains for α = 1 and
S¡ for α = 0.

Corollary 2 to Theorem 2 Consider a mechanism µ de…ned as in
statement i) by the functions α and γ :
i) µ is merge-proof if and only if α(z) ¸ 1 for all z.
ii) µ is split-proof if and only if α(z) · 0 for all z.
This establishes the polar role of S+ and S¡ within the family described in
Theorem 2, or its Corollary 1: they stand out respectively for their robustness
to merging and splitting maneuvers.

If Theorem 2 and its Corollaries 1 and 2 give a symmetrical role to S+

and S¡, this symmetry is destroyed as soon as we introduce the normative
requirements of Section 4. Not surprisingly, these properties point toward
the method S+.

Corollary 3 to Theorem 2 The mechanism S+ is characterized by
the combination of e¢ciency, Continuity, Pairwise Transfer-proofness and
either Zero Change for Null Jobs, or the Stand Alone bound.

Remark 3 Two additional properties can be used to single out the S+

method. They both place an upper bound on individual net waiting costs,
which is the familiar idea of a lower bound on individual welfare. The pes-
simistic stand alone bound for agent i is simply yi · w(fig, x) = xN . Both
S+ and S¡ meet this bound. The unanimity bound for agent i is yi · n+1

2 xi.
It is this agent’s net cost in a hypothetical problem (N,ex) where all jobs are
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of length xi. Clearly S+ meets this bound, whereas S¡ violates it, even for
jN j = 2.

Now S+ is characterized by the combination of e¢ciency, CONT, PTP
and either {the pessimistic stand alone bound plus the unanimity bound},
or {the pessimistic stand alone bound and merge-proofness}. The proof is in
the Appendix.

8 Transfers among three or more agents
The two benchmark methods S+ and S¡, and their a¢ne combinations, are
not vulnerable to bilateral partial transfers of jobs, but trilateral problems
can be a problem.

A simple example with N = f1, 2, 3, 4g illustrates this important point.
In the problem x = (1, 1, 8, 3) coalition T = f1, 2, 3g rearranges its three jobs
as x0 = (2, 4, 4, 3). The actual wait of everyone in T is the same at x and at
the reported x0: in the latter, the slot x01 = 2 is used to complete jobs x1 and
x2, whereas the slots x01 = x03 = 4 are devoted to job x3. We check that under
both S+ and S¡, the total tax on T decreases from x to x0. Equivalently, the
tax on agent 4 increases. By De…nition 2

under S+ at x : t+4 =
1
2
; at x0 : (t+4 )

0 = 2

under S¡ at x : t¡4 = 1; at x0 : (t¡4 )0 =
5
2

Now any mechanism described in statement i) of Theorem 2 is vulnerable to
the same trilateral transfer: indeed α(xN) and γ(xN) do not change from x
to x0. therefore we have proved

Corollary 4 to Theorem 2 If jN j ¸ 4, any e¢cient and continuous
mechanism is vulnerable to job transfers involving three or more agents.
For the sake of brevity, we do not give a formal de…nition of pro…table trans-
fers of jobs involving 3 or more agents. The de…nition is notationally cum-
bersome, and brings no additional intuition beyond that provided by the nu-
merical example above. Notice that the shift from x to x0 may be interpreted
as the combination of merging jobs x1, x2 and splitting job x3. This suggests
that our …rst negative result, theorem 1, is closely related to Corollary 4.
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9 Appendix

9.1 Theorem 1
We …x N , jN j ¸ 4 and a mechanism µ satisfying MPF and SPF, as well as
either CONT and ETE, and we derive a contradiction. Recall that MPF
implies e¢ciency.

Step 1 A limited symmetry property
Fix N, jN j ¸ 2, and two agents 1, 2 2 N. Fix any x 2 RN such that x1 = x2 =
a > 0. We write x¡1, x¡2 for its projection on N n1 and Nn2 respectively, and
de…ne zi 2 RN by z12 = 0, z1¡2 = x¡2, and z21 = 0, z2¡1 = x¡1.We claim

y12(N, z1) = y12(N, z2) = y1(Nn2, x¡2) = y2(Nn1, x¡1)
In the merging of 1 and 2 in z1 to agent 1 in x¡2, merge-proofness (4) gives

y12(z1) · a + xP(1,σ¤) + t¤1(x¡2) = y1(x¡2)

because S 0 = f1g. In the split of 1 in x¡2 to agents 1, 2 in z1, split-proofness
implies

y1(x¡2) · a + xP(1,σ¤) + (t¤)12(z1) = y12(z1)

because 1 is the only agent with a positive job in S = f1, 2g. Thus we get
y12(z0) = y1(x¡2). Consider similarly the merging of 1,2 in z1 to agent 2
in x¡1, and the split of 2 in x¡1 to agents 1,2 in z1 : we get y12(z1) =
y2(x¡1).Exchanging the roles of 1,2 gives the remaining equalities in the
claim.

Step 2 The case of two agents problems
Fix a vector (a, b) 2 R2

+ s.t. 0 < a · b, and an arbitrary triple N = f1, 2, 3g
in N . From Step 1 applied to x = (a, a, b) we get

y1(f13g, (a, b)) = y2(f23g, (a, b))
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Set yi(fi, jg, (a, b)) = ui(ij) and yj(fi, jg, (a, b)) = vj(ij). We have proven
ui(ij) = uk(kj) for i, j, k all distinct. By exchanging the role of a and b
we get similarly vj(ij) = vk(ik). E¢ciency implies ui(ij) + vj(ij) = 2a + b,
therefore vj(kj) = vj(ij) and ui(ij) = ui(ik). We can now set ui = ui(ij) and
vi = vi(ji) for all j 2 Nni. E¢ciency shows that ui + vj does not depend on
the pair (i, j) in N , therefore ui and vi are both independent of i 2 N . We
de…ne a function f(a, b) as follows

yi(fi, jg, (a, b)) = a + f(a, b); yj(fi, jg, (a, b)) = a + b ¡ f(a, b)

keeping in mind that the pair (i, j) is arbitrary.
Step 3

We now compute explicitely the vector of transfers for a three-person problem
N = f1, 2, 3g and x = (a, b, c) with 0 < a · b and a + b · c. This vector is
independent of the choice of a triple in N .

Consider the merging of 2,3 in x to 2 in x¤ = (a, b + c). As the total
physical wait of agents f2, 3g is the same before and after merging, MPF
implies

t23(N, x) · t2(f1, 2g, x¤) = ¡f (a, b + c)

When splitting agent 2 in x¤ to f2, 3g in x, the phyiscal wait of agent 2
is similarly constant, thus SPF implies the opposite inequality and we get
t23(x) = ¡f(a, b + c).

A similar argument about the merging of 1,2 in x to 1 in x¤ = (a+ b, c),
and the symmetrical split of 1 in x¤ to 1,2 in x gives: t12(x) = f (a + b, c).
Our choice of a, b, c guarantees that the actual wait of 1,2 is constant in the
merging, and that of 1 is constant in the split. Because t123 = 0 the vector
t(x) is now computed explicitely. It is convenient to change f to the function
g de…ned by f (α, β) = g(α, α+ β) for all α, β ¸ 0. We have:

t(N, x) = (g(a, d), g(a+ b, d)¡ g(a, d),¡g(a + b, d)) (13)

for all a, b, d such that 0 < a · b, and 2(a + b) · d.
Next we invoke ETE or CONT at a triple (a, b, d) where a = b. ETE

implies t1 = t2 + a. On the other hand CONT implies that f is continous in
both variables, and so is g. For a small positive ε, the net waiting cost of
agent 1 at (a¡ε, a, d) is g(a¡ε, d)+a¡ε, and it is g(2a+ε, d)¡g(a, d)+2a+ε
at (a + ε, a, d). By continuity, t1 = t2 + a follows, namely
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g(2a, d) = 2g(a, d) ¡ a for all a, 0 < a · d
2

(14)

The last step of the proof extends the above argument to four agents problems
like x = (a, b, c, d¡(a+b+c)) with 0 < a · b · c and 2(a+b+c) · d. Looking
to the merging of 3,4 and its reverse split, we deduce t34(x) = ¡g(a + b, d)
from (12). From the merging of f2, 3, 4g and the reverse split, we get t234(x) =
¡g(a, d), and …nally from the merging of 1,2,3 and its reverse split we have
t123(x) = g(a + b + c, d). Gathering our results

t(x) = (g(a, d), g(a+b, d)¡g(a, d), g(a+b+c, d)¡g(a+b, d)¡g(a+b+c, d))

At a pro…le x where b = c, ETE or the same continuity argument as above
gives

g(a + b, d)¡ g(a, d) = g(a+ 2b, d)¡ g(a + b, d) + b (15)

We derive …nally a contradiction between (14) and (13). Taking a = b in
(14), and omitting d for simplicity, we get

g(3a) = 2g(2a) ¡ g(a) ¡ a = 3g(a) ¡ 3a

Taking b = 2a gives similarly g(5a) = 5g(a)¡ 8a. Finally taking a = 2x, b =
3x gives

g(8x) = 2g(5x)¡ g(2x) ¡ 3x = 10g(x) ¡ g(2x) ¡ 19x

and a contradiction with (13) follows easily.

9.2 Theorem 2
9.2.1 Proof of Statement i

Consider the method associated with the functions α and γ. As a spread or
a shrink leaves the sum xN , and therefore γ(xN), unchanged, we can simply
ignore γ while checking PTP. Recall that y+ and y¡ are separable with
associated functions θ+ and θ¡. Thus y = αy+ + (1 ¡ α)y¡ can be written

yi(N, x) = xi +
X

j2Nni
θ(xi, xj;xN)
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where θ(a, b; z) = α(z)θ+(a, b) + (1 ¡ α(z))θ¡(a, b) = 1
2(a ^ b) + 1

2(α(z) ¡
1)(a ¡ b).

For …xed b and z, the function a ¡! θ(a, b; z) is linear before b and linear
after b, and its slope drops by 1

2 at b. In particular, this function is concave.
Thus all we need to show is that any mechanism coming from method y ,
meets PTP.

Consider …rst S, x, x0 and ε as in the premises of (10). Assume without
loss of generality x1 < x2 and that agent 2 2 S transfers ε of his job to 1 2 S.
As xN = x0N , we omit xN in θ(xi, xj;xN) and compute the total net cost of
S before and after the shrink:

yS(x) = v(S, x) +
X

NnS
θ(x1, xj) + θ(x2, xj)

yS(x0) = v(S, x0) +
X

NnS
θ(x01, xj) + θ(x02, xj)

v(S, x0)¡ v(S, x) = (2x01 + x02) ¡ (2x1 + x2) +
X

k2Snf1,2g
pk

where the term pk = x01^xk+x02^xk¡x1 ¢xk¡x2^xk is nonnegative because
a ! a ^ xk is concave. Therefore v(S, x0) ¡ v(S,x) ¸ ε. The same concavity
argument shows θ(x01, xj) + θ(x02, xj) ¸ θ(x1, xj) + θ(x2, xj), and the proof of
(10) is complete.

Next we consider a spread, namely S, x, x0 and ε as in the premises of
(11) with x1 · x2 and 1 2 S transferring of her job to 1 2 S. With the same
notation pk as above, we get: v(S, x0) ¡ v(S, x) = ¡ε +

P
Snf1,2g pk. Setting

qj = θ(x01, xj) + θ(x02, xj) ¡ θ(x1, xj) ¡ θ(x2, xj), we now have

yS(N, x0) + ε ¡ yS(N, x) =
X

Snf1,2g
pk +

X

NnS
qj (16)

where the concavity argument shows this time pk · 0 and qj · 0. Check …rst
that for any agent i /2 ¢(σ 0; 1, 2), we have pi = 0 if i 2 Snf1, 2g and qi = 0 if
i 2 NnS. This is clear because the functions a ! a ^xi and a ! θ(a, xi) are
linear on [0, xi] and on [xi,+1[. Next we pick i 2 ¢(σ0; 1, 2) and suppose
…rst i 2 Snf1, 2g. We have

x01 · xi · x02 =) pi + xi = x01 ^ xi ¡ x1 ^ xi ¡ x2 ^ xi +2xi ¸ 0
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Finally consider i 2 ¢(σ 0; 1, 2) \ NnS. If we show qi + xi ¸ 0, the desired
inequality (11) will follow from (15). Recall that on the interval [x01, x02], the
function a ! θ(a, xi) has 2 linear pieces connecting at xi and such that the
slope drops by 1

2 at xj. Therefore

qi = (θ(x02, xi) ¡ θ(x2, xi)) ¡ (θ(x1, xi) ¡ θ(x01, xi)) · 1
2
(x1 ¡ x01)

The inequality qi + xi ¸ 0 follows if xi ¸ x1. If x01 · xi · x1, compute
qi =

x01¡xi
2 , ensuring qi + xi ¸ 0. This concludes the proof of statement i.

9.2.2 Proof of Statement ii

We …x N , and an e¢cient mechanism µ meeting CONT and PTP.
Step 1

For all nonempty and proper subset S of N , we write H(S) = fx 2 RN
+jxi <

xj for i 2 N nSg. We prove the existence of a function gS(a, b) such that

gS(a, b) is de…ned for a, b ¸ 0 such that
a

jSj <
b

jN j (17)

gS(xS, xN) = tS(x) for all x 2 H (S)

where t(x) is the monetary transfer selected by µ. For any x 2 H(S), ef-
…ciency of µ implies that σ(x) ranks S ahead of NnS, therefore yS(x) =
v(S, x)+tS(x). Given x 2 H(S), we write x¤, also in H(x), the vector x¤i =

xS
jSj

if i 2 S, x¤i = xi if i 2 NnS. Our …rst step toward proving (16) is to show
tS (x) = tS(x¤).

We call two agents i, j adjacent at x if ¢(σ(x); i, j) = ?. Given x and
i, j 2 S, adjacent at x, consider x0 obtained from x by averaging xi and
xj : x0i = x0j = 1

2(xi + xj), x0k = xk otherwise. Thus x0 is a shrink of x, and x
a spread of x0, and PTP implies yS(x) = yS(x0) ¡ ε, where ε = 1

2jxi ¡ xjj.
Now suppose x 2 H(S) as well. Recall yS(x) = v(S, x)+ tS(x). Note that

x0 is in H (S) as well, and that v(S, x0) = v(S, x)¡ε, because ]xi, xj[ contains
no xk, k 6= i, j. We conclude tS(x) = tS(x0).

For any x 2 H (S) such that x 6= x¤, we can …nd two agents i, j 2 S, adja-
cent at x, and average xi and xj without changing tS(x). Thus we construct
a sequence x± = x, x1, x2, ..., by averaging at each step some pair xi, xj where
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i, j are adjacent at x. This sequence either stops at x¤ or converges to x¤.
By construction

yS(xp) = v(S, xp) + tS(x) for p = 0, 1, 2, ...

By continuity of yS and of v(S, .), we deduce tS(x) = tS(x¤) as announced.
A symmetrical construction, starting from any x 2 H(S), and succes-

sively averaging xi, xj for some i, j 2 NnS adjacent at x, delivers tNnS(x) =
tNnS(x¤) where (x¤)i =

xNnS
jNnSj if i 2 NnS and (x¤)i = xi if i 2 S. Combining

this with tS(x) = tS(x¤), and tS + tNnS = 0, we see that tS(x) only depends
upon xS and xNnS, and can be written as in (16) for some function gS. Finally
x 2 H(S) implies xS

jSj < xN
jNj and the proof of Step 1 is complete.

Step 2
We observe …rst that each function gS is continuous on its domain. For

each a, b ¸ 0 such that a
jSj < b

jNj , we de…ne x(a, b) = z by zi = a
jSj for i 2 S,

and zi = b¡a
jNnSj for i 2 N nS. By Step 1

gS (a, b) = tS(x(a, b)) = yS(x(a, b)) ¡ v(S, x(a, b))

and the claim follows by CONT. Next we apply continuity again at those
pro…les where two coordinates are equal, and derive a functional equation
((17) below) linking the di¤erent functions gS .

In the rest of the proof we use the simpli…ed notation S [ fig = Si,
fi, jg = ij, etc...

Fix S , nonempty, and two agents i, j 2 NnS. Choose also any three a, b, c
such that 0 · a < b < c. We construct x and, for ε small enough, x(ε) as
follows:

xk = a if k 2 S ;xi = xj = b;xk = c if k 2 NÂSij

x(ε) = x+ ε(ei ¡ ej) where ei is the i ¡ th unit vector in RN

For ε small enough and positive, any e¢cient ordering of N ranks S before
j, j before i, and i before the rest. For ε small and negative, the order is
S Á i Á j Á NnSij. From Step 1, we have

yi(x(ε)) = xSi j + ti(x(ε)) = xSi j + gSi j(xSi j, xN)¡ gSj(xSj ¡ ε, xN ) for ε > 0
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yi(x(ε)) = xSi ¡ ε + gSi(xSi ¡ ε, xN) ¡ gS (xS, xN) for ε < 0

By continuity of yi and of gT , for all T , we deduce

b + gSi j(sa +2b, d)¡ gSj(sa + b, d) = gSi(sa + b, d) ¡ gS(sa, d) (18)

where s = jS j, n = jN j and d = sa + 2b + (n ¡ s ¡ 2)c. As our choice of c is
only limited by 0 · a < b < c, if Sij 6= N equation (17) holds for all a, b, d
such that 0 · a < b and sa+2b

s+2 < d
n . In the case Sij = N, we have gN ´ 0

and (17) holds for 0 · a < b with d = sa +2b.
Finally the continuity argument applies also to the case S = ?, a = 0.

Thus (17) holds in this case as well, provided 0 < b < d, and with the
convention g? = 0.

Step 3
We derive a …rst consequence of (17)

gS(sb, d) =
X

S

gi(b, d) ¡ s(s ¡ 1)
2

b for all ? 6= S 6= N, and all 0 < b <
d
n

(19)
Equation (17) for S = ?, a = 0, gives (18) for S = ij. Apply (17) next to
S = k and a < b, 1

3(a + 2b) < d
n :

gijk(a + 2b, d) = (gki + gkj)(a + b, d)¡ gk(a, d) ¡ b (20)

Fix d, let a, b converge to a0 = 1
3 (a+2b), and use (18) for S = ki and S = kj :

we obtain (18) for S = kij. An easy induction argument, omitted for brevity,
concludes Step 3.

Step 4
We prove that each function gi(a, d) is a¢ne in a, and its slope is independent
of i 2 N. The assumption jN j ¸ 4 plays a key role in this step, and in this
one only.

Develop (19) using (18) for S = ki and S = kj. We get

(gi + gj + gk)(
a+ 2b

3 , d) = 2gk(
a+ b
2 , d) + (gi + gj)(

a + b
2 , d)¡ gk(a, d)
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for 0 < a < b and a+2b
3 < d

n. As the choice of i, j, k in N is arbitrary, the term
gk(a+b

2 , d)¡ gk(a, d) is independent of k 2 N. Set it equal to h(a, b, d) so the
equation above becomes

X

ω=i,j,k

gω(
a+ 2b

3
, d) ¡ gω(

a+ b
2

, d) = h(a, b, d)

As jN j ¸ 4, and i, j, k are arbitrary, this implies for all i gi( a+2b
3 , d) ¡

gi( a+b
2 , d) = 1

3h(a, b, d). Thus, for …xed d, every function gi meets the equation

g(
a + b
2

, d) =
1
4
g(a, d) +

3
4
g(

a + 2b
3

, d)

Changing variables to a0 = a+2b
3 we get

g(
1
4
a+

3
4
a0) =

1
4
g(a) +

3
4
g(a0) for all 0 · a < a0 <

d
n

where we omit d for simplicity. This is a simple variant of the classic Cauchy
equation (see Aczel [1970]). As g(., d) is continuous on the interval [0, d[, it
must be a¢ne, namely g(a, d) = λ(d)a+β(d). Back to the functions gi, recall
that gi( a+b

2 ) ¡ gi(a) is independent of i: thus the slope λ(d) is the same for
all i and we conclude

gi(a, d) = λ(d)a + βi(d) for all 0 < a <
d
n

(21)

Step 5 End of proof
We obtain one more equation connecting λ, βi, i 2 N, by applying (17)

to S = Nnij, a, b, 0 · a < b and d = (n ¡ 2)a + 2b (as discussed at the end
of Step 2). Applying (18) and (20) we get

b = (gNni + gNnj)((n ¡ 2)a + b, d) ¡ gNnij((n ¡ 2)a, d)

where gNni((n ¡ 2)a + b, d) = (λ(d) ¡ n ¡ 2
2 ) ¢ ((n ¡ 2)a + b) + βNni(d),

gNnij((n ¡ 2)a, d) = (λ(d) ¡ n ¡ 3
2

)(n ¡ 2)a + βNnij(d)

and we omit the similar formula for gNnj. Upon replacing and rearranging:

b = βN(d)+(λ(d)¡n ¡ 2
2

)((n¡2)a+2b)¡1
2
(n¡2)a () βN(d) =

n ¡ 1
2

d¡λ(d)d
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Now we set

α =
2λ +1

n
() λ =

nα ¡ 1
2

; and βi =
1
n
(
n ¡ 1
2

¡ λ)d + γi

where α and γi, i 2 N, depend on d. From the continuity of gi in a, d follows
that of βi and of λ in d, hence of α and γi in d. Moreover γN ´ 0 by
construction. We compute now, with the help of (18), gi and gS in terms of
α and γi :

gi(a, d) = λa + βi =
nα ¡ 1

2
a+

1¡ α
2

d + γi;

gS(a, d) =
nα ¡ s

2
a +

1¡ α
2

sd + γS = α
(n ¡ s)

2
a + (1¡ α)

s(d ¡ a)
2

+ γS

For our two basic methods y+ and y¡, it is easy from De…nition 2 to compute
t+S (x), t

¡
S (x) whenever x 2 H(S) :

t+S (x) =
1
2(n ¡ s) ¢ xS; t¡S (x) =

1
2s ¢ xNnS

Compare with the sum of transfers to tS(x) = gS (xS, xN) in our mechanism
µ :

tS(x) = α(xN) ¢ t+S (x) + (1¡ α(xN)) ¢ t¡S (x) + γS(xN) for all x 2 H(S)

Recall, for any e¢cient method, any S and any x 2 H(S), the equation
yS (x) = v(S, x) + tS (x). We have just proven that the method y associated
with µ, and the method ey = αy+ + (1¡ α)y¡ + γ have eyS(x) = yS (x) for all
S and x 2 H(S). Now if all coordinates of x are di¤erent, this forces y(x) =
ey(x). By continuity the equality holds everywhere on RN

+ . This concludes the
proof of Theorem 2.

9.3 Corollaries of Theorem 2
9.3.1 Corollary 1

Statement i is obvious as y+, y¡ treat equals equally. For statement ii, the
"if" part is obvious. To prove "only if," consider x = d ¢ ei, where ei is, as
before, the i-th coordinate vector. Compute
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y+(x) = dei; y¡(x) =
d
2
(1, .., 1) ¡ (n ¡ 1)

2
dei

Scale Invariance implies y(x) = dy(ei). Taking the j-th coordinate of this
equation for j 6= i, gives

(1¡ α(d))
d
2
+ γj(d) =

1 ¡ α(1)
2

+ dγj(1)

As j varies in N and γN ´ 0, this implies γj(d) = dγj(1) for all j and
α(d) = α(1), as claimed.

9.3.2 Corollary 2

Clearly the component γ(xN) in y(x) plays no role in the properties of merge-
proofness and splitproofness, so we can assume γ ´ 0 without loss of gener-
ality. Observe that the method α ¢ y+ + (1 ¡ α) ¢ y¡ behaves essentially like
a separable method with respect to the function

θα(a, b, d) = 1
2
(a ^ b) ¡ (1 ¡ α(d))

2
(a ¡ b)

That is to say, the net cost yi(N, x) is computed as yi(N, x) = xi+
P

Nni θ
α(xi, xj, xN)

for all N, i and x. We can then mimick the proof of Proposition 2: any mech-
anism with method α(xN) ¢ y+ + (1 ¡ α(xN)) ¢ y¡ is mergeproof if and only
if, for any …xed d, the function θα(¢, ¢, d) meets the system (6); any such
mechanism is split-proof if and only if θα(¢, ¢, d) meets system (7).

One consequence of MPF is that a ¡! θ(a, b, d) is superadditive on [0, b].
In particular

2θ(
b
2
) · θ(b, b) () b

2
+ (1¡ α)

b
2

· b
2
=) α ¸ 1

Conversely, θα meets (6) whenever α ¸ 1. Indeed a ¡! θα(a, b, d) has slope
α
2 ¸ 1

2on [0, b] with θ(b) = b
2, therefore θ(0) · 0. On [0, b] we have θ(a1 +

a2)¡ θ(a2) = θ(a1)¡ θ(0), and the top inequality in (6) follows. The bottom
one is equally easy.

A consequence of SPF is θ(2b, b, d)+b · 2θ(b, b, d), from the top inequality
in (7). This amounts to θ(2b, b, d) · 0 =) 1

2b ¡ (1¡α)
2 b · 0 () α ·

0. Checking that, conversely, θα meets (7) whenever α · 0 is routine and
omitted.
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9.3.3 Corollary 3

Choose α, γ as in the statement of Theorem 2. When does the corresponding
method meet ZCNJ? For all x, all i 2 N, xi = 0 implies y+i (x) = 0 and
y¡i (x) =

1
2xN . Therefore ZCNJ implies 1

2 (1¡α(d))d + γi(d) = 0 for all i and
all d ¸ 0. From this, γ ´ 0 and α(d) = 1 for all d follow at once.

Suppose next that the method associated with α, γ meets SAB. Apply
this property …rst for x, i such that xi = 0. We get 1

2(1 ¡ α)d + γi ¸ 0.
Summing over i gives α(d) · 1 for all d. Apply next SAB to x = dei and to
agent i

d · αy+i (x) + (1¡ α)y¡i (x) = αd+ (1¡ α)
3¡ n
2

d + γi (22)

() n ¡ 1
2

(α ¡ 1)d+ γi ¸ 0

Summing up over i yields α(d) ¸ 1. Thus α ´ 1 and the inequality above
gives γ ´ 0 as well.

9.3.4 Remark 3

The pessimistic stand alone bound applied to x = dei gives the inequality
opposed to (21) above, hence α(d) · 1 for all d. Mergeproofness, on the
other hand, amounts to α(d) ¸ 1 for all d.

Next apply the unanimity bound to any x, i such that xi = 0. We get
1
2 (1¡α)d+γi · 0, hence α(d) ¸ 1 by summing over i. Thus the combination
of the bounds yi · xN and yi · n+1

2 xi captures, again, the method S+.
.
.
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