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1. Introduction

Cointegration analysis and error correction models (ECM) have become the standard tech-

niques for the study of electricity demand since their formal development by Engle and Granger

(1987) and their early application to the forecast of the electricity demand in Engle et al.

(1989). Subsequent developments related to this approach have relied on the use of new

techniques to identify cointegrating relationships (for example, the Johansen’s method (1988,

1991)), as well as on the inclusion of more specific energy-related variables in the model. Some

recent examples of these extensions include the work by Beenstock, et al. (1999) which analyzes

the demand for electricity in Israel, and the one by Silk and Joutz (1997) which constructs an

appliance stock index to study US residential electricity demand. In most of these kinds of

analyses the demand equation is specified as a linear double-log function, as a way to obtain

elasticities directly from its coefficients, and the parameters are estimated using data whose

time span is rather long, going beyond forty years in some cases.

Despite the relative popularity of the above techniques, the long time span covered by these

studies raises serious concerns about the validity of the fixed coefficients (FC) assumption in

the electricity demand equation. This assumption in a double-log functional form of demand

simply implies constant elasticities for the entire sample period under study. This feature of

the model is indeed questionable in light of the changes that could have taken place in the

economy over such a long period of time affecting the demand for electricity. See Hass and

Schipper (1998) for more discussions on this issue. Specific examples of the determinants for

such changes include the efficiency improvements in electrical equipments, the developmental

stage of the economy (whether the economy is in transition to later stages of development and

industrialization), and even the government energy policy and the habit persistence of con-

sumers. These determinants are not static, but rather tend to evolve slowly through time and

thus they constantly modify the responses of the aggregated electricity demand to variations

in income and prices. Therefore, if we use data collected over a relatively long time period to

estimate an electricity demand function, we should at least consider the possibility that the

parameters in the regression may not be constant.

As a way to capture this evolving nature of the electricity demand, some studies have

employed alternative functional forms for the demand equations, such as linear functions, to

indirectly calculate the elasticities as functions of the current levels of the variables and the

parameters of the demand equation (see, for example, Chang and Hsing (1991)). However,

these studies fail to see the possibility of allowing the relevant parameters to vary over time.

Another alternative suggested in the literature is to introduce some structural changes into

the model, but this approach has obvious shortcomings. Among others, it can neither handle

the dynamics of the parameter changes nor provide the perspective of their possible future
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evolution. To our knowledge, these alternatives have been applied in the energy literature

without cointegration analysis, which is necessary to properly identify the longrun relationships

among the relevant variables (see, for example, Hass and Schipper (1998)).

In this paper, we estimate the electricity demand function for Mexico by applying a new

alternative model that combines cointegration analysis with time varying coefficients in the

demand equation. In other words, we look for cointegrating relationships in the electricity

market that change over time. Park and Hahn (1999) have developed the idea of the time

varying coefficients cointegrating regression, which we employ here to estimate the time varying

coefficient (TVC) on the income variable in a double-log functional form of the electricity

demand. The underlying assumption in the model is that the TVC is generated by a smooth

function that can be approximated by a series of functions which expands appropriately as the

sample size grows. Taking into account the intrinsically slow changes in the general factors

that affect electricity demand, such as technology, developmental stage of the economy and

habit persistency, this basic assumption seems plausible. Park and Hahn (1999) demonstrated

that under some regularity conditions the estimators of general TVC cointegration models

are consistent, efficient and asymptotically Gaussian. Thus, in addition to the advantage of

allowing for flexible coefficients, this approach exploits the available information efficiently to

estimate the parameters of the model, and gives a valid basis for forecasting the possible future

path of the TVC.

To highlight the essence of the TVC cointegrating model we use a basic electricity demand

equation with electricity prices and income as explanatory variables. In particular we focus

our analyses on the models with time varying income elasticities for three Mexican sectors:

residential, commercial and industrial, and work with the data that span fifteen years from

1985 to 2000. As a proxy for the income variable, we use private consumption for the resi-

dential and commercial sectors and industrial production for the industrial sector. As we use

monthly data to estimate longrun relationships, we need to properly model the seasonality

present in the electricity demand data. For this, we construct a seasonal variable from what

we call the temperature response function, which is estimated nonparametrically using intra-

day temperature data, such as the measures taken every three hours. This seasonal variable

provides a temperature measure that reflects the variations in electricity demand due to the

factors related to the changes in temperature.

The resulting demand equation is then estimated by the canonical cointegrating regression

(CCR) method developed in Park (1992) to effectively deal with the endogeneity and the serial

dependence of the error introduced as we approximate TVC by a series of functions. The

validity of the proposed TVC cointegration model is examined by performing the specification

tests against the spurious regression with TVC and also against the usual FC cointegration

model, using Wald-type variable addition tests. The results support the cointegration against
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spuriousness and TVC against the FC specification. The presence of TVC in the cointegrating

relationship also allows for more flexible formulation of ECM which may include more than

one lags of the error correction term. The usual ECM based on a FC cointegration model

is limited to include only one lagged error correction term due to the collinearity with the

lags of the error correction terms and the lagged differences of the other included variables.

Finally, we conduct an out-of-sample forecast exercise over a twelve-month forecast horizon

to evaluate the performance of our proposed TVC cointegration model, compared to those

of the FC cointegration model and the ECM derived from our TVC cointegration model.

Based on the root mean square error criterion, the TVC cointegration performed better than

the FC cointegration model for all three sectors. On the other hand, the ECM performed

better than the TVC cointegration model for the residential and commercial sectors, which

was expected since the forecast horizon is relatively short. In the industrial sector, however,

the ECM was outperformed by the TVC cointegration model, indicating that the industrial

electricity demand is more responsive to long term changes than to temporal shocks. This may

be explained by the rigidities and the constraints present in the energy market, such as the

inflexibilities of the industrial equipments to switch among different energy sources and the

limited infrastructure for the distribution of alternative energy sources.

The rest of the paper is organized as follows. Section 2 introduces the theoretical back-

ground for the TVC cointegrating regression model, the CCR methodology, and the model for

the seasonality of electricity demand along with the temperature response function. In Section

3, we present the empirical results from the estimation of the temperature response function,

the TVC cointegrating regression, the ECM derived from the TVC cointegration model and

the FC cointegration model. Also provided are the out-of-sample forecast comparison among

the three models for each sector. Finally, some concluding remarks are provided in Section 4.

2. The Model

2.1 The Time Varying Cointegrating Regression Model

The prototype electricity demand model used in the literature takes the form

dt = π + γyt + δpt + φzt + ut,

where dt denotes the demand for electricity, yt the income or production, pt the real price

of electricity, zt the variable that captures the seasonal component of the demand,2 ut the

stationary error and π, γ, δ and φ the parameters to be estimated. All of the economic variables

are expressed in natural logarithms.

2A detailed description on how to construct this seasonal variable zt is given in Section 2.3.
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Let xt = (yt, pt, zt)0, and ᾱ = (γ, δ,φ)0. Then we may rewrite the above model as

dt = π + ᾱ0xt + ut. (1)

In this linear double-log functional form of the demand, the parameters in the vector ᾱ rep-

resents the elasticities, and they are assumed to be constant over the entire sample period

under study. However there is a possibility that the longrun relationships among the variables

change through time, especially when we are analyzing the model over a relatively long time

period. In order to take into account the time varying nature of the elasticities, we may allow

the parameters to evolve over time and accordingly specify the model as

dt = π + α0txt + ut, (2)

where the coefficients αt are now allowed to change over time.

Furthermore, given that the responses of the electricity demand to the changes in the

exogenous variables could be affected by slowly evolving factors such as the degree of economic

development or the habit persistence of the agents, it is assumed that αt changes in a smooth

way. Specifically we let

αt = α

µ
t

n

¶
, (3)

where n is the sample size, t ∈ {0, 1, 2, ..., n} and α is a smooth function defined on the unit

interval [0,1]. Note that the subscript indicating the dependence of αt on n has been suppressed

for notational simplicity. As an estimand of the function α, we define the functional

Π(α) = (α(r1), ......,α(rd))
0, (4)

where ri is a number in the interval [0,1].

If the function α in (3) is sufficiently smooth, then it is well known that α can be approx-

imated arbitrarily well by a linear combination of a sufficiently large number of polynomial

and/or trigonometric functions on [0,1]. For our study, we consider the Fourier Flexible Form

(FFF) functions, which include a constant, a linear function, ϕ(r) = r, and k pairs of trigono-

metric series functions, (ϕi(r))
k
i=1, where each pair ϕi(r) is defined as ϕi(r) = (cosλir, sinλir)

0

with λi = 2πi. That is, we assume that the smooth function α can be approximated by the

function αk defined as

αk(r) = βk,1 + βk,2 r +
kX
i=1

(βk,2i+1,βk,2(i+1))ϕi(r), (5)

with βk,j ∈ R3 for j = 1, 2, . . . , 2(k + 1) and for some k. In fact, Park and Hahn (1999)

showed that the function α given in (3) can be arbitrarily well approximated by (αk) by
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increasing the number k of the included trigonometric pairs.3 Alternatively, if we define fk(r) =

(1, r,ϕ01(r), ...,ϕ0k(r))
0 with r ∈ [0, 1] and βk = (β0k,1,β0k,2, ...,β0k,2(k+1))0, the function αk defined

in (5) can be rewritten as

αk = (f
0
k ⊗ I3)βk, (6)

and the estimand Π(αk) as

Π(αk) = (αk(r1)
0, ...,αk(rd)0)0 = Tkβk, (7)

where Tk is the matrix given by Tk = Fk ⊗ I3 with Fk = (fk(r1), ..., fk(rd))0 for k ≥ 1.
Estimation of αk and Π(αk) involves the estimation of the parameters in βk, as can be seen

from (6) and (7). A natural way to estimate these parameters is to apply the ordinary least

squares (OLS) to the regression

dt = π + β0kxkt + ukt, (8)

where

xkt = fk

µ
t

n

¶
⊗ xt,

ukt = ut + (α− αk)

µ
t

n

¶0
xkt,

using the notations defined earlier. Note that the new error ukt includes an additional term

representing the error from approximating the original smooth function α in (3) by the series

function αk introduced in (5). From the OLS estimators β̂nk = (β̂
0
nk,1, β̂

0
nk,2, . . . , β̂

0
nk,2(k+1))

0

of βk from regression (8), the sample estimates of αk and Π(αk) can be easily obtained by

substituting βk with its sample estimate β̂nk in (6) and (7). They are given by α̂nk = (f
0
k ⊗

I3)β̂nk and Π(α̂nk) = Tkβ̂nk, where the subscript n is used to make it explicitly that the

parameter estimates depend on the sample.

Park and Hahn (1999) showed that Π(α̂nk) is a consistent estimator of Π(α) if the number

k of the trigonometric pairs included in the series (5) increases along with the sample size n

at an appropriate rate. The required expansion rate for k is determined by the smoothness

of the function α and the moment conditions of the underlying time series. The required rate

becomes slower as the function becomes smoother or as the number of the existing moments

of the underlying time series gets smaller.4 Of course, the conditions on the smoothness of

the function α cannot be verified, since α is not observable, and therefore the validity of the

3This result holds if it is assumed that α is at least twice differentiable, with bounded derivatives on [0,1].
See Park and Hahn (1999, Lemma 2).

4The explicit assumption is that k = cnr with 2/(2q − 1) < r < (p− 2)/3p, where c is a constant, n is the
sample size, p is the number of moments of the underlying variables and q the number of derivatives of α. See
Park and Hahn (1999, Assumption 4).
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resulting estimators is based on our perception of the way the time varying coefficients evolve

through time. They also showed that the convergence rate of the series estimators is n−1k,
which is slower, by a factor of k, than the convergence rate of the OLS estimators for the usual

FC models.

Due to the endogeneity of the error term, the OLS estimators of the TVC cointegration

model (8) are asymptotically inefficient, and in general non-Gaussian,5 which invalidates the

standard OLS-based inferential procedures. To obtain efficient estimators and a valid inferen-

tial basis for the parameters in our TVC model (8), we employ, as in Park and Hahn (1999),

the canonical cointegrating regression (CCR) method developed by Park (1992). The CCR

method is based on the transformations of the variables that are correlated in the longrun with

the error term, which effectively remove the longrun endogeneity and the serial correlation ef-

fects in the errors. In the following section, we layout the CCR procedure for the estimation

of our TVC cointegrating model (2) or (8).

2.2 CCR Estimation

For the estimation the TVC cointegrating model (8) by the CCR method, we first construct the

required transformations for the variables dt, yt and pt using their stationary components. Let

x̃t = (yt, pt)
0, vt = ∆x̃t and wt = (ut, v0t)0, where (ut) are the stationary errors in the original

TVC model (2). For the process wt, we also need to define the long run covariance matrix

Ω =
P∞
k=−∞Ewtw

0
t−k, the contemporaneous covariance matrix Σ = Ew0w

0
0, and the one-sided

longrun covariance matrix ∆ =
P∞
k=0Ewtw

0
t−k. We partition Ω, Σ and ∆ conformably with

the partition of wt into cell submatrices Ωij , Σij and ∆ij , for i, j = 1, 2. Note that Σ11 and

Ω11 represent, respectively, the short and longrun variances of the error ut.

The CCR estimation of the TVC cointegrating model (8) is based on the regression

d∗t = π + β0kx
∗
kt + u

∗
kt, (9)

whose elements are defined by

d∗t = dt −
µ
fk

µ
t

n

¶
⊗∆2Σ−1wt

¶0
βk − (0,Ω12Ω−122 )wt,

x∗kt =

µ
fk

µ
t

n

¶
⊗ x̃∗t , zt

¶
,

u∗kt = u∗t + (α− αk)

µ
t

n

¶
xkt,

using the transformed nonstationary explanatory variables x̃∗t and the modified error u∗t given
below

x̃∗t = x̃t −∆2Σ−1wt, u∗t = ut − Ω12Ω−122 ∆x̃t,
5See Park and Hahn (1999, Theorem 7).
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where ∆2 = (∆012,∆022). We note that the longrun variance of the CCR error (u∗t ) is given by

$2∗ = Ω11 − Ω12Ω−122 Ω21, (10)

which is the conditional longrun variance of the error (ut) given the innovations (vt) of the

regressors (yt, pt)0, and is strictly less than the longrun variance Ω11 of ut, unless the regressors
are strictly exogeneous. Hence the CCR estimation, i.e., the OLS estimation of the CCR

transformed model (9), yields efficient and optimal estimators. In practice, non-parametric

methods can be employed to compute consistent estimates of Ω and ∆ using the fitted residuals

from the OLS estimation of model (8).6 Denote by π̂∗ and β̂
∗
nk the CCR estimators, which are

the OLS estimators of model (9). Then we may use them to obtain the efficient estimators

α̂∗nk = (f 0k ⊗ I3)β̂
∗
nk and Π(α̂

∗
nk) = Tkβ̂

∗
nk for αk and Π(α) from the relationships given in (6)

and (7). Park and Hahn (1999) demonstrated that the CCR estimator Π(α̂∗nk) is a consistent
estimator of Π(α) and that its limit distribution is normal.7

The consistency and efficiency of the CCR estimators of the TVC cointegrating model (9)

are attained presuming that the original time varying coefficient model (2) or (8) is correctly

specified. Hence it remains to justify the adequacy of the model (2), and we will do so by

performing two specification tests proposed in Park and Hahn (1999), which are Wald-type

variable addition tests introduced originally in Park (1990). The first statistic τ∗ tests whether
or not the TVC model (2) is cointegrated against the alternative that the model is spurious.

Specifically, the test is defined as

τ∗ =
RSSTV C −RSSsTV C

$2∗
, (13)

where $2∗ is the long run variance estimate of (u∗t ) given in (10), and RSSTV C and RSSsTV C
are the sums of squared residuals, respectively, from the CCR transformed TVC model (9)

and from the same regression augmented with s additional superfluous regressors. Under the

null hypothesis that the true model is a TVC cointegration model, the limit distribution of

the test τ∗ is a chi-square with s degrees of freedom. The basic idea underlying the test τ∗ is
to exploit the tendency of the unit root processes to be correlated with superfluous variables

6Denote such residuals (ûkt) and define ŵkt = (ûkt, v0t)
0. Then the components of the autocovariance function

can be estimated nonparametrically as

Ω̂nk =
1

n

X
|j|≤hn

K

µ
j

n

¶X
t

ŵktŵ
0
k,t−j (11)

∆̂nk =
1

n

X
0≤j≤hn

K

µ
j

n

¶X
t

ŵktŵ
0
k,t−j (12)

where K is the kernel function and hn the window width. Commonly used kernels, such as Barlett, Parzen or
the rectangular kernel, would lead to consistent estimators.

7See Park and Hahn (1999, Theorem 10).
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with deterministic or stochastic trend. If indeed the model (2) is spurious, it is well known

that including such superfluous variables will significantly improve the fit of the regression, and

therefore reduce the sum of squared residuals, even when they are known to be irrelevant. On

the other hand, if the model (2) is an authentic cointegrating regression, the inclusion of such

variables will hardly affect the estimation results. The choice of the superfluous regressors

plays an important role for the actual performance of the test. In this paper, we use time

polynomials t, t2, t3, . . . , ts as superfluous regressors, following the suggestion given in Park

(1990).

To motivate the statistic we will use for testing the validity of the TVC cointegration

model (2) against the FC cointegration model (1), we note that the FC cointegration model

(1) becomes a FC spurious regression if indeed the true cointegrating relation contains time

varying coefficients. Hence, we may test for the validity of the model (2) against the FC

cointegration model (1) simply by testing whether the FC model is cointegrated. For this, we

define the statistic τ∗1
τ∗1 =

RSSFC −RSSsFC
$2∗

, (14)

analogously as τ∗ given in (13), where RSSFC and RSSsFC denote the sums of squared resid-
uals, respectively, from the fixed coefficient cointegrating model (1)8 and from the same re-

gression augmented with s additional superfluous regressors, and $2∗ is an estimate of the
long-run variance computed from the TVC cointegrating model (9).9 Park and Hahn (1999)

showed that the statistic τ∗1 has the same limiting null distribution as τ∗, and also that τ∗1 is
a consistent test which diverges under the TVC cointegrating model.

Before proceeding to estimate the demand model for the Mexican case, we discuss how we

may specify and estimate the variable zt in our TVC model (2) that captures the seasonal

component of the electricity demand.

2.3 Modeling Seasonality

We observe strong seasonality in the electricity demand, especially in high frequency data such

as monthly, which needs to be properly modelled for the consistent estimation of the demand

equation. Engle et al. (1989) have indeed shown that the parameters in a cointegrating

regression will generally be inconsistent if the seasonality is stochastic. The standard approach

to overcome such inconsistency problem has been to filter the data either by changing its

periodicity (for example, from monthly to annual data) or by taking differences of the variables

at the seasonal frequencies. The obvious consequences from using such solutions are reduction

8To deal with models with general error specifications the statistics τ∗1 are based on CCR transformed models.
9They show that the use of the long-run variance from the FC model reduces the divergence rate of the

statistic, and recommend to use the more efficient estimate $2
∗ computed from the TVC cointegrating model

(9)
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in the sample size and/or elimination of some long-run variations in the level variables, which

we want to avoid due to data limitations and the slow convergence rate of the series estimators

for the parameters in our TVC cointegrating model. An alternative approach is to directly

model the seasonality by choosing a variable that captures the seasonal component of the

electricity demand. Traditional candidates for such variable are temperature related-measures

such as the number of heating and cooling days per period (for example, in a month) and the

average temperature. Certainly, this approach will neither reduce the sample size nor eliminate

the elements of the long-run variations in the data. However, this approach may introduce

the risk of incorrectly estimating the effect of temperature on the rate of electrical equipment

usage, if based on a broad temperature measure such as those mentioned above. For example,

the use of an air conditioner is determined by the high temperatures during the day time, not

by the overall daily average temperature. In this paper we take the latter approach, but with

a new and more flexible temperature measure.

We assume that the seasonality of the electricity demand is mainly due to the weather

conditions, and construct a variable that captures such seasonality using intraday temperature

data. Specifically, we model the seasonality of the electricity demand using a temperature

response function that relates seasonal variations of the demand with the current tempera-

ture levels. As a guide to construct such a function, we consider three general patterns that

characterize the influence of the temperature on electricity demand. First, we observe that

extreme temperatures, either high or low, increase the demand for electricity. This means we

would see a U-shape graph, if we plot the demand versus current temperature. Second, we also

observe that the response of the electricity demand to change in temperature is larger when

the temperature is high compared to when it is low. That is, the response of the demand is

different depending on the current temperature level. This phenomenon would be reflected in

an asymmetric U-shape graph when the demand is plotted against the temperature. Third,

when comparing the responses by sectors, we observe that the residential demand shows the

strongest responsiveness, while the industrial sector demand exhibits the weakest responsive-

ness to the same change in temperature. These general characteristics are what we attempt

to capture with a temperature response function, which will be used later to construct the

seasonal component zt of the demand. We assume that the temperature response function, say

g, takes the FFF functional form given by

g(τp) = c0 + c1τp + c2τ
2
p + c3 cos(2πτp) + c4 sin(2πτp) + · · · , (15)

where τp ∈ [0, 1] is the normalized temperature at time p (ideally with hourly data) and
ci, i = 0, 1, 2, 3, . . . , are the parameters to be estimated.

Although in principle the parameters of the above temperature response function g could

be estimated by regressing a measure of the seasonal component of the electricity demand
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against the terms on the right hand side of equation (15), the data limitations we face gen-

erally shape the way in which those coefficients are estimated in practice. It is important to

notice that the temperature response function (15) is defined in terms of current temperature

in order to extract the information about extreme temperatures and duration. In general any

intraday data such as temperature readings taken every hour or every three hours can be used

to estimate the function g. Although temperature data are available at such high frequencies,

it is often difficult to find data for the electricity demand at a frequency higher than monthly.

Consequently, we need to come up with a new measure computed from the available temper-

ature data at the frequency that matches with the available electricity demand data. As the

required measure, we use the “expected” value of the temperature response function computed

over the period of time determined by the frequency of the demand data. It is given more

explicitly byZ
p∈t
g(τp)ft(τp)dτp = c0 + c1

Z
p∈t

τpft(τp)dτp + c2

Z
p∈t

τ2pft(τp)dτp

+ c3

Z
p∈t
cos(2πτp)ft(τp)dτp

+ c4

Z
p∈t
sin(2πτp)ft(τp)dτp + · · · , (16)

where t is the period in which the demand data is indexed (for example, a month) and ft is the

density function of the temperature data over the period t. Notice that the density functions ft
of the temperature data are indexed by t, indicating that we allow the temperature densities to

differ across different time periods to capture the changing weather conditions from one period

to another in the same year or across different years.

Computing the terms in equation (16) is relatively straightforward. Using intraday tem-

perature data (around 720 observations per month if the data is hourly or 240 if the data are

collected every three hours) we can estimate the densities ft by a non-parametric technique,

such as kernel estimation, at each t. Once we obtain the estimates f̃t for the densities, we can

easily compute the Riemann sum approximations of the integrals in the right hand side of the

expected temperature response function given in (16). Finally, the estimates for the parame-

ters in (16) are obtained by regressing the seasonal component of the electricity demand (as

will be discussed in the empirical section) against a constant term and the temperature vari-

ables represented by some of the integrals on the right hand side of the expected temperature

11



response function. That is, we estimate the regression

dst = c0 + c1

Z
p∈t

τpft(τp)dτp + c2

Z
p∈t

τ2pft(τp)dτp

+

qX
i=1

µ
c2i+1

Z
p∈t
cos(i2πτp)ft(τp)dτp

¶

+

qX
i=1

µ
c2(i+1)

Z
p∈t
sin(i2πτp)ft(τp)dτp

¶
+ εt, (17)

where dst is the seasonal component of the electricity demand, q the number of trigonometric

pairs, εt the error term, and the other variables and parameters are defined as in (16). The

OLS estimators (c̃0, c̃1, c̃2, . . . , c̃2(q+1))0 of the parameters (c0, c1, c2, . . . , c2(q+1))0 can thus be
readily obtained. With these estimators we can construct an estimate g̃ for the temperature

response function g defined in (15) as

g̃(τp) = c̃0 + c̃1τp + c̃2τ
2
p + c̃3 cos(2πτp) + c̃4 sin(2πτp) + · · ·

+ c̃2q+1 cos(2πτp) + c̃2(q+1) sin(2πτp), (18)

and in turn use this to define the seasonal variable zt of our TVC model (2) as

zt =

Z
p∈t
g̃(τp)f̃t(τp)dτp. (19)

One advantage of our seasonality modelling described above is that it is general and flexible

enough to encompass other approaches seen in the literature. For example, the approaches

that use the first moment of the temperature distribution as their weather-related variable can

be easily formulated in our framework simply by imposing the parameter restrictions, ci = 0

for i ≥ 2, in the temperature response function (15).

3. Empirical Implementation of the Model: The Mexican Case

3.1 Description of the Data

We use the TVC cointegrating model (2) to estimate the demand for electricity in Mexico

for the residential, commercial and industrial sectors. Taking into account the fact that the

estimators of the parameters in the TVC models converge at a slower rate compared to those

in the usual FC models, we work with a relatively large sample consisting of the monthly

data from 1985:01 to 2000:05, with 185 monthly observations in total. The electricity data

are obtained from the Comision Federal de Electricidad (CFE), and include monthly sales and
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prices.10 To identify the demand11 by sector we follow the CFE’s classification that categorizes

the customers by their energy consumption. For instance, private customers who demand low

voltage are classified into the commercial sector and those who demand medium to high voltage

are classified into the industrial sector. In the case of the residential sector, CFE has a specific

classification for these types of customers. It is important to mention that the reported CFE’s

data in general do not correspond to the energy consumption of the reported month because

of the lag between the month when the consumption was realized and the month when the

transaction was actually registered. This is mainly a result of the routine schedule of payments

followed by the government. Accordingly we adjust the demand data before the estimation of

the model.

In our study, we use a weighted average of electricity prices, since there are differences

in the prices across regions of the country and among the levels of energy consumption per

customer. Also, to analyze the impact of the price of substitute goods, such as natural gas

and diesel, we use relative prices in our regressions.12 As a proxy for the disposable income,

we use private consumption13 for the residential and commercial sectors, and an indicator

for the industrial production that includes mining, manufacturing and construction for the

industrial sector.14 Regarding the frequencies of the data, the indicators for the industrial

production are reported on a monthly basis, while the private consumption data are reported

on a quarterly basis. To work with monthly data for our estimation, we therefore transform

the quarterly consumption data into monthly, using as a pattern the behavior of the monthly

industrial production index. Finally, given that Mexico is a relatively large country, we divide

the country into five regions and collect the temperature data from their representative cities15

to obtain the input variables for the temperature response function. Although the frequencies

at which the temperature data are collected vary across regions and over time, we were able

to obtain the temperature data taken every three hours for all regions and the months covered

in our sample period.

3.2 Estimation of the Temperature Response Function

For the estimation of the temperature response function defined in (15), we need a measure

for the seasonal component of the electricity demand, and estimates for the terms in the

10The sales of the CFE represents around 80% of the total in the country. The remaining 20% of the sales is
from Luz y Fuerza, also a stated owned company, whose data were not completely available to us.
11Because the demand and supply of electricity are always in balance, we use without distinction the terms

sales and demand throughout the paper.
12All prices are obtained from the components of the Producer Price Index generated by Banco de México.
13Here we implicitly assume that consumers first decide the amount of their income that is saved and con-

sumed, and later they decide how much to consume of each good and service.
14All the real variables are obtained from INEGI (Instituto Nacional de Estadística, Geografía e Informática).
15Source of the temperature data, Comisión Federal del Agua, México.
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Table 1: Temperature Response Functions

Residential Sector Commercial Sector Industrial Sector
Coefficients t-values Coefficients t-values Coefficients t-values

c0 -0.096 -1.129 -0.241 -3.405 -0.042 -0.980
c1 -1.251 -3.272 -0.188 -0.590 -0.410 -2.150
c2 2.418 6.356 1.088 3.428 0.822 4.326
R̄2 0.829 0.801 0.706

expected temperature response function given in (16). To estimate the terms in (16), we

first estimate the temperature densities by kernel estimation, and use them to approximate

the integrals in (16) for each region. Then, using the regional electricity consumption as

weight, we obtain their weighted averages over regions, and use them as the terms on the

right hand side of the expected temperature response function (16) for the whole country.

A normal kernel with optimal16 fixed bandwidth is used for the estimation of the density

functions. On the other hand, as the measure for the seasonal component of the demand,

we use the detrended series of the sectorial electricity sales, with the trend estimated as the

centered 12 month moving average of the original series. Given that all of the involved variables

are stationary, by nature (temperature) or by construction (seasonal component of demand),

standard econometric techniques are applied to estimate the parameters of the regression (17).

In light of the three general observed patterns on the ways temperature influences the

electricity demand, we find from our Mexican data that the best specification for the temper-

ature response function (15) turns out to be a simple quadratic function of temperature with

no trigonometric pair, i.e., g(τp) = c0 + c1τp + c2τ
2
p, for all sectors with the standardization

τp = (sp+5)/50 for the actual temperature sp at time p. The OLS estimators for the parame-

ters in the temperature response function for all sectors are presented in Table 1 and the shapes

of the functions are shown in Figure 1. To facilitate the interpretations, they are converted

as functions of the actual temperature s. Moreover, for easy comparisons across three sectoral

demands, the estimated temperature response functions are given in terms of the deviations

from the mean. If we denote by g̃ as earlier the estimated temperature response function

of the standardized temperature, then the function ĝ presented in Figure 1 can be written

as ĝ(sp) = (g̃((sp + 5)/50) − ḡ)/ḡ, where ḡ is the mean value of the estimated temperature
response function g̃, i.e., ḡ =

R 1
0 g̃(τp) dτp.

The shapes of the temperature response functions are as expected. They show the asym-

metric U-shape in the range of temperatures that we observe, with the scale of the estimated

parameters reflecting the fluctuations of the seasonal component of the demand around its

16Optimal in the sense that it minimizes the Approximation of the Mean Integrated Squared Error (AMISE)
for normal kernels.
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Figure 1: Temperature Response Functions by Sectors

mean. We illustrate in the following examples how one may interpret the results in Table 1. If

we look at the residential sector at 250C, the estimated value of the response function is 0.0281

and at 260C, 0.0617. Hence, if there is an increase in the average temperature from 250C to

260C, the expected result is that the electricity demand will grow by around 3.27 percent.17

On the other hand, if the temperature drops from 50C to 40C, the expected increase in the

demand will be only 0.74 percent. For the industrial sector, the corresponding percentages for

the same temperature references will be 1.17 and 0.18 percents, respectively, for an increase and

a drop in the current temperature by one Celsius degree. These examples show the differences

in the responses within the sector, which depend on the current temperature level, as well as

the differences across the sectors, with the residential demand being the most responsive to the

temperature variations. It is also worth noting from Table 1 that the squared temperature as

well as the level temperature are important in explaining the seasonal patterns of the demand

data. Indeed, the coefficient on the squared temperature is statistically significant, even the

one on the level temperature is not, for the commercial sector temperature response function.

3.3 Estimation of the TVC Model

In order to properly specify the model for the estimation, we first analyze the nonstationary

characteristics of the data. The presence of unit roots in the variables involved is tested using

Augmented Dickey-Fuller (ADF) test with the shortrun dynamics determined by the Schwartz

Information Criterion (BIC). According to the results reported in Table 2, there is evidence in

17Since the temperature response functions are given in terms of the deviations from their means, the
percentage effect on the electricity demand of the temperature change from s1 to s2 may be computed as
(1 + ĝ(s2))/(1 + ĝ(s1))− 1.
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favor of the presence of unit roots in the private consumption, the industrial production and

all the electricity demand series. The results for the price series are, however, mixed and thus

inconclusive, which is not surprising given the fact that the electricity prices in Mexico are

controlled and heavily regulated by the CFE. Based on these results, we treat the income (yt)

and demand (dt) series as known to be nonstationary variables, while we allow the price series

(pt) to be either stationary or nonstionary. Then we accordingly specify our TVC model as

dt = π + γtyt + δpt + φzt + ut. (20)

Notice that we allow the coefficient γt on the known to be nonstationary regressor yt to vary

over time to capture its evolving longrun relationship with the dependent variable dt, which

is also known to be nonstationary.18 On the other hand, the coefficient δ on the potentially

nonstationary regressor pt is modelled as a fixed parameter. We note here that the CCR

methodology, which we will use for the efficient estimation of our TVC model (20), is robust to

the misspecification about the nonstationarity characteristics of the data, as shown in Kim and

Park (1998). Thus, we may just regard the variable pt, whose nonstationary characteristics is

uncertain, as nonstationary and directly apply the CCR procedure introduced in Section 2.2.

We specify the time varying coefficient γt as a smooth function as in (5), and approximate

it by a series of functions that include a constant, a linear time trend and k trigonometric

pairs, as in ( 5). To determine the number k of the trigonometric pairs to be used in the series

estimation of the time varying coefficient γt, we use BIC to pick a parsimonious model since it

is known to favor simpler models by giving heavier penalties to the models with larger number

of parameters. The CCR transformations are based on the differences of the detrended yt and

pt, and the nonparametric estimators of the long-run variance Ω and the one-sided long-run

variance ∆ matrices defined in (11) and (12).19 Table 3 reports the results obtained after

removing the statistically insignificant variables from the models.

Before we analyze the results of our model (20), we first examine the validity of the model.

To this end, we use the specification tests τ∗1 and τ∗ introduced in Section 2.2, which are
constructed here by using four time polynomial terms (t, t2, t3, t4) as the additional superfluous

regressors. Table 4 reports the results from estimating the fixed coefficient model needed to

construct the test τ∗1, while Table 5 presents the computed test statistics τ∗ and τ∗1 for all
sectors. The results of τ∗1 clearly show that the FC cointegrating model is rejected in favor
18Working with logs of the series, γt can be regarded as the “instantaneous elasticity” of dt with respect to

yt. To see this, notice that taking the total differential and fixing pt and zt we have

ddt = γtdyt + ytdγt or
ddt
dyt

= γt +
yt
dyt

dγt

As ∆t→ 0, dγt → 0 faster than dyt → 0 (due to the smoothness assumption on γt) and therefore ddt/dyt → γt.
19For the nonparametric estimation, we used the Parzen window with the lag truncation number selected by

using the data-dependent selection rule suggested by Andrews (1991).
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Table 2: Unit Root Tests (Augmented Dickey-Fuller Tests)

Variables Demeaned Series Lags Detrended Series Lags
dt
Residential -1.183 12 -0.903 12
Commercial 0.250 13 -1.997 13
Industrial 0.550 12 -1.180 12

yt
Private Consumption 0.212 16 -1.914 16
Industrial Production -0.221 2 -3.167 2

pt
Residential -2.876 12 -3.172 12
Commercial -4.105 1 -3.711 1
Industrial -2.170 2 -3.515 1

5% Critical Values -2.860 -3.41

Table 3: CCR Estimation of TVC Regression Models

Coefficients by Sector
Variables Residential Commercial Industrial
Constant (π) 6.280 (4.04) 6.841 (4.70) 10.33 (7.92)
Price (δ) -0.048 (-3.6)
zt (φ) 0.995 (28.4) 0.995 (29.5) 0.870 (15.5)
Parameter Estimates of the TVC’s: γt

k 1 2 2

βk,1 0.367 (4.81) 0.289 (4.04) 0.226 (3.34)
βk,2 0.039 (20.5) 0.026 (15.2) 0.041 (20.7)
βk,3 -0.002 (-8.0) -0.001 (-5.0) 0.0018 (9.21)
βk,4 -0.0006 (-1.5) 0.0008 (2.17) 0.0016 (5.43)
βk,5 0.0014 (5.25) -0.0017 (-6.9)
βk,6 0.0003 (1.23) -0.0006 (-2.3)

Longrun Variances of the CCR Errors
Ω∗11 0.00278 0.00145 0.00079
SC -5.71 -5.90 -6.84
R̄2 0.975 0.957 0.99
DW 1.47 2.69 1.56

Note: The numbers in parentheses are the t-values
based on the CCR estimators.
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Table 4: CCR Estimation of FC Regression Models

Coefficients by Sector
Variables Residential Commercial Industrial
Constant (π) -25.82 (-9.64) -15.73 (-16.84) -9.99 ( -7.80)
Price (δ) -0.44 (-3.47) -0.07 (-1.09) -0.25 (-5.82)
Income (γ) 1.95 (14.93) 1.40 (30.80) 1.29 (19.57)
zt (φ) 0.70 (5.09) 0.83 (11.63) 0.43 ( 1.59)
Longrun Variances of the CCR Errors

Ω∗11 0.0406 0.0068 0.0203
SC -4.212 -5.041 -5.028
R̄2 0.875 0.875 0.928
DW 1.097 1.867 0.923

Note: The numbers in parentheses are the t-values
based on the CCR estimators.

Table 5: Specification Tests

Sectors τ∗1 τ∗

Residential 663.97 6.74
Commercial 438.73 2.47
Industrial 1042.36 11.66

1% Critical Values 13.28 13.28

of the time varying coefficient (TVC) cointegrating model (20). The statistic τ∗ also suggests
that the TVC model is well cointegrated in all sectors at one percent significance level. The

evidence is especially strong for the commercial and residential sectors. Notice that in the case

of the fixed coefficient model, which specification was rejected, the elasticity of the electricity

demand with respect to the income or production is higher than one, and the price elasticity is

significant in the residential and industrial sector. Now that our TVC model (20) is tested to be

an authentic cointegration model, we may now meaningfully interpret the coefficient estimates

reported in Table 3 as the parameters of the longrun relationships among the variables.

We first note that contrary to the results of the fixed coefficient model, the parameter esti-

mates for the prices are not statistically significant in the demand functions for the residential

and commercial sectors. This is still the case even when we include as explanatory variables

the indices for the relative electricity prices with respect to the prices of its close substitutes,

such as natural gas for domestic use. One possible explanation for this finding is the price dis-

tortions from the government subsidies to the electricity prices. Indeed there have been large

amount of governmental subsidies in most of the developing countries. In Mexico, for instance,

a government report estimates the implicit subsidies to the electricity prices during the year
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2000 is in the amount of 4.5 billions of dollars, which amounts to an overall 31 percent subsidy

to Mexican electricity prices.20 The subsidy to the residential customers was approximately 61

percent, while the subsidy to the commercial and industrial customers was only 7 percent with

respect to the real cost of electricity. These figures justify very well the lack of explanatory

power of the prices in the residential demand for electricity. When there is large amount of

subsidy in electricity prices, prices would naturally become weak determinants of the demand

for electricity. In such cases, the factors related to electricity availability would become more

relevant.

In the commercial sector, on the other hand, much of the burden from the price increases

can be treated as cost and eventually passed on to final customers, thereby generating a

significant amount of relief for the commercial customers. This along with the lack of flexibility

to use alternative energy sources in the commercial sector may explain why the prices are not

significant determinants for the commercial demand for electricity. Also in the industrial sector,

we find that the electricity demand does not respond to the electricity prices. However, it turns

out that the industrial demand responds to the relative price with respect to the price of diesel,

although it did not respond to other relative prices related to the price of natural gas. These

findings suggest that generators run by diesel were the main back source of the electricity used

by the industrial plants for the whole sample period from 1985 to 2000. It is also consistent

with the fact that the use of the generators run by natural gas was promoted only in the last

few years. According to our results in Table 3, the price elasticity of the industrial electricity

demand is around −0.05, which is not nearly as big as those reported for other countries in
earlier studies relying on the models with fixed coefficients,21 and also those produced by the

fixed coefficient model estimated from our Mexican data. See Table 4. In general it is observed

that once the TVC is introduced, the estimates for all coefficients in the electricity demand

equation become lower than those obtained from the usual FC models used in other studies

(see, Westley (1992)).

The estimated values of the time varying coefficient γt on the income variable yt are pre-

sented by sector at some representative months in Table 6, and Figure 2 plots these coefficients

for the whole sample period. One consistent result comes out of these estimations is that for

all sectors the TVC follows a predominantly increasing path during the entire fifteen years of

our study. Since the values of γt are less than one but increasing, we may say that in all sectors

the demand for electricity is becoming less inelastic with respect to the variable yt (private

consumption for the residential and commercial sectors, and industrial production for the in-

dustrial sector). This suggests either that the stock of electrical equipments and appliances was

becoming less efficient in the consumption of energy,22 or that the new ones are more intensive
20SHCP, Source: La Jornada, newspaper, Mexico, March 14, 2001.
21They are between -0.5 and -1. See, for instance, Westley(1992), pp 86.
22For example, consider the case when the electrical equipment and appliances are becoming old.
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Table 6: Values of the TVC’s (γt)

Sectors
Residential Commercial Industrial

Coefficients Values a* b* Values a* b* Values a* b*
γ1985:02 0.37 0.29 0.23
γ1990:01 0.38 4.2 4.2 0.30 2.8 2.8 0.24 6.6 6.6
γ1995:01 0.39 3.7 8.0 0.31 2.8 5.7 0.25 3.7 10.6
γ2000:01 0.40 2.2 10.4 0.31 2.9 8.7 0.27 6.3 17.5
γ2000:05 0.40 0.2 10.6 0.32 0.3 9.0 0.27 0.3 17.9

a* Increments with respect to the previous values (%)
b* Accumulated increments (%)

in the use of electricity. These perspectives are related to the growth sources of the economy

and the characteristics of the stock of the electrical equipments. In any case, the changes that

have occurred in the values of the time varying income elasticities seem irreversible.

Across the sectors, however, we find remarkable differences in the behaviors of the estimated

time varying coefficients γt (income elasticities), and also in the paths they have taken over the

sample period. See Table 6. In the residential sector, the total increments in the values of the

income elasticities over the entire sample period is 10%. The path of the elasticity also shows

a clear tendency of slowing down. The increments are reduced from 4% in the first five years

of the sample to only 2.2% in the last five years, from January 1995 to January 2000. On the

other hand, the income elasticity of the commercial electricity demand increased on average

2.8% every five years, and by 8% for the entire fifteen years of the study. We observe much

more noticeable variations in the estimates for the TVC (production elasticity) in the industrial

sector. The total increments in values of the TVC here is approximately 18% over the entire

sample period, which is far greater than those in the residential and commercial sectors. In

May 2000, the last period of our sample, the value of the production elasticity reaches the

level 0.267; however, it is still much smaller than the figures reported in other studies on the

electricity demand for Latin America and the US. They report essentially unitary production

elasticity, see Westley (1992, p 87) for example.

In the industrial sector, we find similar patterns of the estimated values of the production

elasticity for two sub-periods: the first from 1985 to 1992, and the other from 1993 to 2000. In

each sub-sample, the values of the production elasticity increases rapidly for the first 3-4 years,

but the increments become smaller for the subsequent years and eventually are stabilized.

In both sub-samples, the values of the production elasticity increased by around 6.5%. It

is interesting to note that the beginning of the rapid increase in the production elasticity

coincides with the periods of recession in the economy (1985 and 1993) as well as with two
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events that significantly impacted the industrial structure: the inclusion of Mexico to the

General Agreement on Tariff and Trade (GATT) in 1985 and the negotiation of the North

America Free Trade Agreement (NAFTA) in 1993. The recessions may have been reflected in

low production levels that did not allow an efficient use of the electrical equipments. If that

was the case, then the electricity demand response is different depending on the state of the

economy: the increment in electricity demand due to an increment in production would be

higher when the economy is in recession than when the economy is in expansion. However, the

increasing path of the production elasticity would be better explained in terms of the specific

characteristics of the industry. In this regards the inclusion of Mexico to the international trade

agreements may have triggered industrial expansion, which in turn triggered an intensive use

of electricity.

Besides its ability to allow for flexible coefficients, the TVC model also provides a tool

for forecasting the future path of the coefficients. The function that is used to model the

time varying income elasticity takes the form given in (5), which involves only deterministic

functions. Hence, we may readily obtain the time profile of the time varying coefficient, as

reported in Table 3, and use them to forecast the path of the income or production elasticity

for the forthcoming months.

3.4 ECM and Forecast Comparison

The ECM is formulated based on the TVC cointegrating model of the electricity demand

specified in (20). From the results on the CCR estimation of the TVC model (20), we first

obtain the following error correction terms

ect = dt − π̂∗ − γ̂∗t yt − δ̂
∗
pt − φ̂

∗
zt,

which is nothing but the fitted residuals, and where the values of π̂∗, γ̂∗t , δ̂
∗
and φ̂

∗
are reported

in Table 3. To focus our analysis on the dynamics of the electricity demand growth driven

by those of the economic factors only, we define the following mean and seasonality adjusted

demand series

d̃t = dt − π̂∗ − φ̂
∗
zt,

which extracts the component of the electricity demand explained by income/production and

prices (when they appear to be statistically significant).

Then we formulate an ECM for d̃t as

∆d̃t =

qX
k=1

b1kect−k +
p1X
k=1

b2k∆d̃t−k +
p2X
k=1

b3k∆yt−k +
p3X
k=1

b4k∆pt−k + εt. (21)

Note that here we may have more than one lags of the error correction term ect as the right

hand side variables. This is in contrast to the usual ECM based on a FC cointegration model,
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Table 7: Error Correction Coeficients

Sectors
Residential Commercial Industrial

Coefficient b11 -0.918 (-6.487) -0.759 (-5.526) -0.791 (-5.520)

Note: The numbers in the parentheses are the associated t-values

for which only one lagged error correction term is allowed due to the multi-collinearity problem

between its lags and the lagged differences of the other included variables. In our ECM (21),

the presence of the time varying coefficient (γt) in the lagged error correction terms (ect−k)
eliminates such multi-collinearity problem. The coefficients (b1k) of the lagged error correction

terms (ect−k) characterize the adjustment path over q time periods toward the equilibrium
value of the demand after an external shock. Thus, we are now able to learn more about the

adjustment path, including how long it takes to reach the long-run equilibrium. For estimation,

we set the lag orders p1, p2 and p3 at 12 since the data are monthly, and focus our attention on

the statistical significance of the coefficients (b1k) on the lagged error correction terms, which

are the new feature of the model. To determine the number of lags q of the error correction

terms, we estimated the model (21) for several choices of q. We found that including more

than one lag of the error correction term tends to make all the coefficients (b1k) statistically

not different from zero. However if we include only the first lag, then the coefficient b11
becomes significantly different from zero with the expected negative sign, which is consistent

with a stable adjustment process toward the long run equilibrium. The result suggests that the

adjustment of the electricity demand is concentrated in the period that follows immediately

after an external shock. The value of the estimated error correction coefficient b11 and the

associated t-value are reported in Table 7 for each sector.

Finally, we conduct an out-of-sample forecast exercise for each sector to evaluate the per-

formance of our proposed TVC cointegration model (TVCCM) in (20) in relation to those of

the FC cointegration model (FCCM) in (4), and the ECM derived from our TVC cointegration

model (ECM) in (21). The data are divided into two subsets: the first set covering the obser-

vations from 1985:01 to 1999:05 is used to fit the model, and the second set, including those

from the remaining twelve months (1999:06 - 2000:05), is reserved for the forecast evaluation.

For each model and sector, the given model is estimated using the first subset of the data,

and subsequently the forecasts for the last twelve months are computed using the estimated

parameters, along with the actual data on the exogenous variables, yt, pt, and zt, and the

forecasted values of the time varying coefficients γ̂t. The forecasts from the three competing

models, FCCM, TVCCM, and ECM, are presented in Table 8 along with the actual values of

the observed electricity demand from the second subset of the data. We also compute the root
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Table 8: Out-of-Sample Forecast Comparison between FCCM, TVCCM and ECM

Residential Sector Commercial Sector Industrial Sector

Forecast Forecast Forecast

Period dt FCCM TVCCM ECM dt FCCM TVCCM ECM dt FCCM TVCCM ECM

1999:06 14.807 14.876 14.720 14.713 13.404 13.455 13.428 13.379 15.671 15.717 15.636 15.641
1999:07 14.837 14.785 14.681 14.744 13.502 13.389 13.398 13.468 15.649 15.720 15.629 15.616
1999:08 14.787 14.831 14.749 14.779 13.405 13.427 13.443 13.436 15.650 15.716 15.652 15.676
1999:09 14.679 14.758 14.667 14.633 13.421 13.370 13.390 13.424 15.621 15.701 15.629 15.616
1999:10 14.542 14.807 14.569 14.528 13.279 13.404 13.331 13.265 15.582 15.653 15.592 15.596
1999:11 14.589 14.689 14.494 14.507 13.296 13.350 13.270 13.284 15.591 15.645 15.572 15.575
1999:12 14.563 14.631 14.461 14.498 13.227 13.293 13.227 13.198 15.575 15.646 15.564 15.523
2000:01 14.513 14.512 14.471 14.477 13.314 13.219 13.237 13.289 15.656 15.656 15.578 15.572
2000:02 14.550 14.585 14.535 14.522 13.303 13.281 13.292 13.266 15.625 15.679 15.603 15.584
2000:03 14.650 14.825 14.659 14.639 13.416 13.466 13.396 13.417 15.699 15.816 15.657 15.641
2000:04 14.763 14.786 14.708 14.676 13.446 13.434 13.424 13.389 15.709 15.753 15.667 15.650
2000:05 14.845 15.038 14.805 14.769 13.551 13.576 13.500 13.510 15.733 15.852 15.709 15.703

RMSE 0.119 0.071 0.062 0.067 0.047 0.030 0.073 0.033 0.043

mean square error (RMSE) for each model and sector as a basis for the comparison.

Based on the RMSE criterion, the TVC cointegration model clearly outperformed the FC

cointegration model in all three sectors. The forecasts produced by the TVCCM have much

smaller RMSE’s compared to those produced by the FCCM. Indeed, the use of the TVCCM

leads to the reduction in the RMSE by 30 to 55%. The results from comparing the models

TVCCM and ECM are, however, mixed. In the residential and commercial sectors, the ECM

predicts better the path of the electricity demand than the cointegration model, and overall

the demand forecasts produced by the ECM follow closely the observed levels. This is not

surprising since our forecast horizon is relatively short and the ECM is designed to explain the

short-run behavior better than the cointegration model which focuses on modelling long-run

relationship.

In the industrial sector, however, the TVC cointegration model performs better than the

ECM. The RMSE obtained from the TVC cointegrating model is smaller than the one from

the ECM, as it is shown in Table 8. This result suggests that the adjustment of the industrial

electricity consumption is more responsive to the long term changes than to the temporal

shocks in the industry. Part of the reason for this pattern is the inflexibility of the industrial

equipments to switch among different energy sources. Another reason may be the lack of

available alternative energy sources, such as natural gas, which is not readily available in

Mexico because of the limited infrastructure for its distribution. However, we expect that

there will be more economic incentives to adjust the industrial electricity consumption more

promptly and continuously, as the market becomes more competitive and the substitutes for

electricity become more available. An external shock would then have not only the lasting long-

24



run impact but also the short-run adjustment effect on the pattern of the industrial electricity

demand.

4. Concluding Remarks

In this paper we analyze the electricity demand for the residential, commercial and industrial

sectors in Mexico, using a new approach by Park and Hahn (1999) that allows for time varying

coefficients (TVC) in the cointegrating relationships in electricity demand equation. The de-

mand equation is specified in a double log functional form with income/production, electricity

prices and a measure for seasonal fluctuations as explanatory variables. The income/production

elasticity is in particular specified as a TVC, and with this flexibility we may model the evolving

relationship between the electricity demand and the level of income/production, which was not

possible in the previous models with fixed coefficients. To reflect the intrinsically slow changes

in the factors affecting the electricity demand, such as technology, developmental stage of the

economy and habit persistency, the TVC is modelled as a smooth function and approximated

by a series of functions. As a measure for the seasonality in our monthly electricity demand

data, we use a seasonal variable constructed from the temperature response function which is

estimated nonparametrically from intraday temperature data.

Validity of the proposed TVC cointegration model specification is tested against the alter-

natives of the spurious regression and the fixed coefficient cointegration model, using the Wald

type variable addition tests. The specification tests support the TVC cointegration model

against both of the alternatives, favoring the notion of a changing relationship between elec-

tricity demand and its main determinants over time. The resulting TVC cointegration model

is estimated by the cannonical cointegration regression method to deal with the endogeneity

and serial dependence of the error resulted from the aforementioned approximation.

We find the following three evidences from the estimation of the TVC cointegration model

for the electricity demand. First, the inclusion of the TVC in the model significantly reduces

the levels of the estimated coefficients, which represent the elasticities, compared to those

obtained from the usual fixed coefficient models. In particular, the income/production elasticity

is substantially less than unity for all sectors, indicating that the demand is inelastic with

respect to the changes in income/production in all sectors. This is quite surprising, since

many earlier studies in the literature reported that the income/production elasticity of the

electricity demand is near unity. Second, in the last fifteen years such elasticities have taken

predominantly increasing paths in all sectors, and do not show any evidence of returning to

their previous levels. Third, once we assume a TVC in the demand equation, price becomes

statistically irrelevant as an explanatory variable for the long run behavior of the electricity

demand, except for the industrial demand which weakly responded to the relative price of
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electricity with respect to the price of diesel. The lack of explanatory power of the prices in

the electricity consumption of the residential and commercial sectors may be explained by the

rigidities of the prices which have been determined and heavily subsidized by the government.

A direct consequence of having a TVC in the cointegration model is that the derived ECM

can now include more than one lags of the error correction terms, thereby allowing us to learn

more about the adjustment path toward the long-run equilibrium. Presence of a TVC in the

error correction terms eliminates the multicollinearity problem observed in the usual ECM

based on the fixed coefficient model. We finally conduct an out-of-sample forecast comparison

between the TVC cointegrating model, the ECM derived from the TVC cointegration model

and the usual fixed coefficient model. As expected, the TVC cointegrating model outperforms

the fixed coefficient model in forecasting electricity demand for the twelve-month horizon in

all sectors: sometimes reducing the root mean square error by more than 50%. Moreover,

the ECM outperforms the TVC cointegrating model in the residential and commercial sectors,

and this is also well expected since the forecast horizon is relatively short. However, the TVC

cointegrating model performs better than the ECM in the industrial sector, which may be

explained by the inflexibilities in the industrial equipments to swich among different energy

sources and the limited infrastructure for the distribution of the alternative energy sources,

hindering the industrial demand to adjust quickly.
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