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Abstract

We study the probabilistic distribution of identical successive
units. We represent the allocation process as the filling of an urn with
balls of different colors (one color per agent). Applications include
the scheduling of homogeneous tasks among workers and allocating
new workers between divisions. The fized chances methods allocate
each unit independently of the current distribution of shares. The
Polya-Eggenberger methods place in an urn a fixed number of balls
and draw from the urn with replacement of two balls of the color
drawn.

These two families of urn-filling methods emerge uniquely from
our axiomatic discussion involving: a version of the familiar Con-
sistency property; Share Monotonicity, (my probability of receiving
the next ball is non-decreasing in my current share); Independence
of Transfers (transferring balls across agents is not profitable) and
Order Independence (a sequence of successive allocations is as likely
as any permuted sequence).

We also explore the impact of Share Monotonicity (my probabil-
ity of receiving the next ball is non-increasing in my current share),
leading to an equalization of individual shares along a fixed standard
of comparison.
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Filling a Multicolor Urn: an axiomatic
analysis

1 Introduction

In an urn—filling problem, there is a set N = {1,2,...,n} of agents, each agent
1 being represented by a different color. The urn contains initially x; balls of
color 4, and ¢ additional balls must be added to the urn. The question is to
allocate the ¢ balls between the agents in NV, namely to paint each ball in one of
the n colors. Lotteries are used for the sake of fairness: e.g., if ¢ = 1, the single
ball may be equally divided among the n agents by assigning it to each agent ¢
with probability 1/n.

An urnfilling method selects a (probabilistic) allocation for each urn—filling
problem.

The urn—filling model represents a variety of distributive justice problems
where a given set of agents share some homogeneous indivisible units. For
instance the i — th department of a university college currently has x; positions
and ¢t new positions have been funded, that must be allocated between the
departments. Or agent i represents a community (city, region), x; is the number
of recruits that have been drafted in community 7, and an additional burden of ¢
draftees must be divided among the communities. Or the agents share a house,
x; is the number of times housemate ¢ has performed a certain chore (clean the
yard), and the issue is who will be next.

In the above examples, x; represents agent ¢’s current share of resources, but
many other interpretations are possible. For instance x; could be the number of
recruits that community ¢ offers to draft, and the total draft burdenis t+) ", x;.
Or z; is the number of new classes that department i wishes to offer, and the
demand for t + )", z; classes must be met, or community ¢ offers to host z;
refugees, but the total number of refugees is ¢t + ), ;. And so on.

The extreme simplicity of our model comes from the fact that agents are
only differentiated by a single parameter x;, a non negative integer that can be
variously interpreted as an actual share of the resources, a demand, a claim, a
liability and so on. An urn—filling method associates to each profile (z1, ..., z,)
and to each (positive integer) ¢, a probability distribution over all allocations of
t units among n agents.

Our main axioms are two invariance properties linking the solutions to dif-
ferent urn—filling problems. The Markovian property says that the allocation of
t units is equivalent to ¢ successive independent allocations of one unit: in other
words the method is entirely determined by the way it allocates a single unit
in the urn (z1,...,2,), i.e., by the probabilistic distribution over N describing
who receives the next unit given the current state of the urn. The Consistency
property says that the allocation of ¢ units to n agents is equivalent to n succes-
sive independent allocations to the individual agents. That is, we choose first a



realization y; of agent 1’s share, then a realization y, of agent 2’s share when
t — y1 units are allocated among N\ {1}; next y3 realizes agent 3’s share from
t — y1 — y2 units among N\ {1, 2}, and so on.

Obviously the Markovian and Consistency properties have much mathemat-
ical bite, without conveying any notion of interpersonal equity: for instance
the urn—filling method that always gives all ¢ units to the same agent i* (the
"dictator”) is both markovian and consistent, as is the (egalitarian) method
that allocates each successive unit with equal probability 1/n to each agent. If
the entire family of markovian and consistent methods is too complicated for a
compact description, we find that an additional mild monotonicity requirement
points to the simple and natural Polya-Eggenberger urn—filling methods (see,
e.g., Johnson and Kotz [1977]).

In a Polya-Eggenberger method, the urn contains a fixed number A; of balls
of color ¢ plus agent ¢’s current share x; The next unit is allocated by drawing a
ball from the urn (containing . (\; 4+ x;) balls) and replacing it with two balls
of the same color. Thus agent i receives this unit with probability proportional
to A; + z;. Note that \; is a positive real number, not necessarily an integer. In
such a method, the greater agent i’s current share x;, the greater his chances of
receiving the next unit. One of our main results (Theorem 1), describes the fam-
ily of markovian and consistent urn—filling methods sharing this monotonicity
property (a higher current share x; means a higher chance of receiving the next
unit). The family consists, essentially, of the Polya-Eggenberger methods just
described, and of the fixed chances methods, where the probability distribution
of the next unit is altogether independent of the current content of the urn.

Our second main result (Theorem 2) characterizes the markovian and con-
sistent urn-filling methods with the opposite monotonicity property: a higher
current share z; implies a lower chance of receiving the next unit. These in-
clude the fixed chances methods, and many other methods that tend to equalize
shares just like the P.E. methods tend to spread them.

Before announcing the contents of the paper, we review the relevant litera-
ture.

The seminal model is the "rationing according to claims” ’ problem intro-
duced by O’Neill [1982], and further discussed by Aumann and Maschler [1985],
Young [1987] [1988] and many others under various names, such as bankruptcy
or inheritance problem (Thomson [1995] offers a survey). In the rationing model,
x; is a positive real number representing agent i’s claim/demand/liability, and
the available resources t’, also a positive real number, fall short of the total
claim: t" < . x; There is also a dual (and less studied) ”surplus-sharing”
model where the resources ¢’ exceed the sum of individual claims, ¢’ > >~ z; :
Young [1987], Moulin [1987], Chun [1989], Herrero et al. [1999].

The model of this paper belongs to the surplus-sharing family (modulo the
change of variable ¢t = t' — ). x;), with two special features of crucial techni-
cal importance. First the homogeneous commodity comes in indivisible units,
second the method selects a lottery over the feasible deterministic allocations.

Our two key axioms, Consistency and the Markovian property, are famil-
iar to the rationing and surplus-sharing literatures. Consistency has played the



leading role, ever since the characterization of the symmetric and consistent
rationing or surplus-sharing methods in the classical model (i.e., divisible good
and deterministic shares) by Young [1987]!. These methods all have a paramet-
ric representation, which appears to have no counterpart in the probabilistic
model of this paper.

The Markovian property plays a smaller role than Consistency in the classical
literature, yet it appears prominently (under various names) in Moulin [1987],
Young [1988], Moulin [2000a], Herrero et al. [1999].

In the classical model, a full characterization of all markovian and consis-
tent methods is still out of reach?. A considerable advantage of the probabilistic
model is that, upon adding mild monotonicity or individual rationality condi-
tions, we get a full description of the impact of these two axioms.

Two recent papers by the same authors, Moulin [2000b], and Moulin and
Stong [2000], are a key inspiration to the present work. In the same probabilistic
model with indivisible homogeneous goods, these papers consider the rationing
problem, namely the total resources ¢’ fall short of the total claim ), x;. A
solution to the rationing problem is a method to empty from the urn (z1, ..., z,)
t =3, x; —t' units. The question is which should be the color of the balls we
take out of the urn? From the same consistency and Markovian axioms, as well
as similar monotonicity and individual rationality constraints, the method called
proportional emerges: this method simply empties the urn without replacement,
picking the next unit away from agent ¢ with probability x;/ > ;T Thus the
single proportional urn—emptying method is the counterpart of the family of the
Polya-Eggenberger urn—filling methods. After each one of our main result, we
comment on the corresponding result, if any, in the urn-emptying model: see
Remarks 2 to 6. We also stress that many proof techniques in the Appendices
1 to 6 follow closely those of the companion papers.

Overview of the paper

The model and the key axioms are defined in Section 2. They include Con-
sistency and the Markovian property, as well as the two properties mentioned
above called Share Monotonicity; and Share Monotonicity - (SM; and SM_),
stating respectively that agent i’s share of the surplus ¢ does not decrease, or
does not increase, as agent i’s share z; increases. Each assumption is compelling
in certain contexts: SM in the draft or academic recruitment example, where
a larger share reflects a larger liability or a larger claim in the next units, SM_
in the chores examples, where a larger record of chores in the past warrants a
lower contribution tomorrow.

In Section 3, we restrict attention to deterministic markovian and consistent
methods. A simple description of all such methods is not possible, even in this
simple case. Yet the subset of those methods satisfying Share Monotonicity., e =
+, — has a very simple structure. Under SM we are left with the unappealing
”winner takes all” methods whereby any urn will be filled exclusively to the

1Young’s result also assumes some continuity and monotonicity properties.
2Young [1987] adds a symmetry assumption plus some regularity properties, and Moulin
[2000a] adds an equally powerful ”dual” markovian property.



benefit of one agent, though which agent is the "winner” may depend upon the
initial urn. Under SM_ we find the plausible equalizing methods that essentially
fill the urn according to a fixed pattern.

The Polya-Eggenberger (P.E.) methods are defined in Section 4, and char-
acterized in Theorem 1, together with the fixed chances methods (where the
distribution of the next unit does not depend on the urn at all). Theorem 1
uses four axioms: Consistency, the Markovian property, Share Monotonicity
and a mild individual rationality property stating that any agent stands some
positive chance of receiving some unit sometime in the future. The latter axiom
is called Positive Future Shares (PFS).

Theorem 2 in Section 5 describes the urn-filling methods meeting the same
four axioms, except that Share Monotonicity is replaced by Share Monotonicity _.
We find a rich family of methods patching together an equalizing method as in
Section 3, at most one fixed chances method, as well as some pieces of a pro-
portional filling method.

In Section 6, we introduce two additional axioms. The first one, Invariance
under Transfers, is an old friend of the rationing and surplus-sharing literatures
in the classical model (Banker [1981], Moulin [1987]). It states that interpersonal
transfers of shares (from x1, x2 to 2143, x2—3, say) are never profitable (the total
share of agents 1 and 2 will not change). The second axiom, Order Independence,
is new, and applies to markovian methods only. Think of allocating ¢ units as a
sequence of length ¢ describing who receives each successive unit; the Ol axiom
requires that two realizations of the sequence that sum up to the same profile
of shares, be equiprobable. Thus OI conveys the idea that the filling method is
chronologically unbiased: it schedules agents equally often in the early rounds
or in the late ones. In probability theory, OI corresponds to the property of
random processes called exchangeability (Billingsley [1995]).

Theorem 3 in Section 6 shows that the only markovian filling methods meet-
ing IT and OI are, once again, the Polya-Eggenberger and the fixed chances
methods.

Section 8 focuses on the markovian methods meeting OI but not necessar-
ily consistent. These methods are interesting in their own right thanks to an
appealing bayesian interpretation: Theorem 4.

The six Appendices contain all the proofs as well as several extensions and
variants of the four main results. Specifically, we consider in Appendix 2 what
happens to Theorem 1 when we drop the Positive Future Shares requirement. In
Appendix 5 we give a characterization, albeit a non-intuitive one, of all marko-
vian and consistent methods. Finally Appendix 6 offers a complete description
of the markovian and consistent methods also invariant under transfers.

2 Urn-filling methods and the key axioms

Let N ={0,1,2,...} be the set of natural integers and N be a finite set of agents.
An urn is a pair (N, x) where x = (x;);en is a vector in NV, of which the i — th



component z; represent agent i’s allocation. For each subset S of N, we write
Dies Ti = Ts.

A filling method r specifies for each non-empty subset N of a given (finite or
infinite) set A/ of potential agents, for each initial urn (N, z) and each positive
integer ¢, a random variable (N, z,t) =Y = (Y;);en, where Y; is integer-valued,
Y; >, and ), YVi=any + ¢

We impose two powerful decomposition properties on filling methods: the
Markovian property makes the addition of ¢ units equivalent to ¢ independent
successive additions of one unit; the consistency property makes the filling of an
N —urn equivalent to first computing agent i’s (random) share, then computing
independently the allocation of the remaining units among the remaining agents
N\. The former property links the association of successive units, the latter
links the allocation across nested subsets of agents.

Markovian Property(M): for all N,t,z, y st. yy =xzy +tand y >z

proba{r(xz,t) = y}=

Zproba{r(:r, 1) = z+e}proba{r(z+e;,t—1)=y} (1)
iEN

where e; is the i —th coordinate in NV and where we set proba{r(z+e;,t—1 =
y} = 01if y; = 2; (in which case filling the urn from z to y precludes giving any
unit to agent 7). Note that we omit from equation (1) any reference to N since
N plays no role in equation (1).

Starting from an arbitrary urn (N, z), suppose we add one unit according to
7, so that the content of the urn becomes (N, x, 1) = 2!, next we add one unit to
the (realization of) urn !, that becomes r(N, x!,1) = 22 (this new draw being
independent of the first), and keep adding units in same fashion. The Markovian
property says that ¢ iterations of this algorithm generate a random variable Y’
with precisely the same probability distribution as (N, z, t). Therefore a marko-
vian filling mechanism is entirely described by a mapping (N,z) — p(N,z),
specifying for each urn (N, z) the probability distribution of r(N,z, 1) : p;(N, x)
is the probability that agent i receives the first unit, or

pi(N,z) = proba{r(N,z,1) =z + e;}.

Consistency (CSY): for all N,t,z,i € N, and y,y > x and yy =y + ¢

proba{r(N,z,t) = y}=
proba{r;(N,z,t) = y;}.proba{r(N\i,_;,t —y; +x;) = y_;} (2)
where z_;,y_; are the projections of z,y on NN\,

Adding ¢ units to the urn x can be decomposed into two stochastically in-
dependent moves, the first one choosing agent i’s share y; (according to the



probability distribution of r; (N, z,t)) and the second one adding ¢ — y; units to
the urn (N\4, z_;), no longer paying attention to agent i.

We give first some examples of filling methods failing one or the other of
the two basic requirements. We set n = |N|. A non markovian example is the
random dictator method:

1
for all N,t,x and i : proba{r(N,z,t) =z +te;} = - (3)

Note that random dictator is consistent, however.

An easy way to generate a non consistent method is to let one type of method
govern the filling of urns among three agents, and a completely different type
for filling urns with two agents. One instance is the markovian method:

1
pi(N,x) = -~ for all N,z and ¢ whenever |N| > 3
1
pi{i,jhx) = 1ifz <zj;= 3 ife; =x;;=0if z; > z; (4)

The family of markovian and consistent filling methods is still very compli-
cated (see Appendix 5), and in order to provide an easy description, we shall
add one of two natural, and mild, monotonicity properties.

When agent i’s share in the urn (N, z) increases from z; to z; + 1, does
his share of a given number of additional units go up or down? If the units
being allocated represent the dividends of an investment and x; represent agent
s share in total investment x, it is natural to require that the larger xz; is,
the larger agent ¢’s share of the dividends. Similarly, if x; represent agent i’s
tax contributions, and the units are an additional tax to be levied, a larger tax
payment yesterday warrants a higher share of the tax burden today.

On the other hand if units represent chores (washing the dishes, sending
recruits to be drafted), a higher number of chores performed so far is grounds
to receive a lesser share of the new chores to be divided.

These examples suggest the following two monotonicity properties, pulling
the filling method in opposite directions:

Share Monotonicity, (SM,) : for all N,z,t and ¢
ri(N,z,t) —x; < ri(N,x+e,t) — (2 +1) (5)

where the inequality between random variable means stochastic dominance.

Share Monotonicity (SM ) : forall N,x,t and i
ri(Nyz,t) —z; > ri(Nyz+e;,t)— (z;+1) (6)

The property SM_ conveys the idea of a feedback equalizing individual
shares, in the sense that a higher share is less likely to grow than a smaller



one. Symmetrically, SM, suggests a reinforcement mechanism whereby a larger
share is growing faster than a smaller one: success breeds success and it is not
inconceivable that one agent’s share overtakes (almost) the entire urn3.

Notice that SM,_ and SM_ express a certain notion of fairness, but do not
include any element of interpersonal comparison of shares. Both axioms are,
in fact, compatible with any amount of asymmetry in the treatment of the
different agents. For instance consider a fized chances filling method, namely a
markovian method where p(N, x) = « is independent of z. This method meets
both SM, and SM_. As « varies in the N— simplex, it embodies an arbitrary
amount of interpersonal discrimination.

Remark 1 . In our characterization results (such as Theorems 1, 2 and Propo-
sition1) we only need to assume a weaker property than SM, _,namely the spe-
cial case t=1 in inequalities (5) or (6):

SMi . pi(N,x) is non decreasing in x;

SM' . pi(N,x) is non increasing in x;

When N contains three or more agents, the SME1 property, for e =4, —, is
strictly weaker than SM_ as the reader can easily verify*.

Remark 2 An urn-emptying method r specifies for each initial urn (N, z) and
each integer t,1 <t < xy, a random variable r(N,xz,t) =Y where Y; is integer-
valued, 0 <Y; < x;, and Zi Y; = xn — t. One interpretation is that x; is agent
1’s claim, or demand, and t is the size of the deficit, namely the difference
between total demand and actual resources. Another familiar interpretation is
tazation: x; represents agent i's tax liability and t is the total tax to be levied.
See the discussion of the rationing/taxation model in Section 1.

The two companion papers Moulin [2000b] and Moulin and Stong [2000]
discusses the urn-emptying model, as well as the "dual”problem of filling an urn
with a cap, namely allocating t units among N when agent i's demand x; is an
upper bound on his (random) share Y;. The main axioms used in Moulin and
Stong [2000] are precisely the same as in the current paper, namely Consistency,
the Markovian property (under the name of Upper Composition), and Share
Monotonicity, (under the name of Demand Monotonicity*), namely a larger
demand implies a larger responsibility in the deficit:

x; —ri(Nyx,t) < (z; + 1) — (N, z + 5, 1)

3This however, does not happen in the Polya-Eggenberger filling methods discussed from
Section 4 onward.

{The case |[N| = 2 is an exception. There the two properties are equivalent, as can be
shown by mimicking the proof of Lemma 4 in Moulin and Stong [2000].



Only the Share Monotonicity_ axiom has no analog in the urn-emptying model,
as the inequality ri(z,t) + 1 < ri(xz + e;,t) for all x,t would imply r;i(xz,t) >
ri((z; — 1, x_),t) +1 > ri((x; — 2,2_;),t) + 2 > ... > x;, contradiction.

Most of the results discussed below have a counterpart in the urn-emptying
model, in some cases an almost identical statement. See Remarks 3, 4, 5 and
6. The proof techniques of Proposition 1, Theorems 1 and 2 are adapted from
those in the urn-emptying companion paper.

3 The case of deterministic methods

In this section we restrict attention to deterministic methods, namely (N, ¢, x)
is not random after all. The set of markovian and consistent methods meeting
one of the two monotonicity axioms is both easy to describe and normatively
unappealing: e.g., in the case of SM_ , these methods leave no room for a fair
compromise.

The probability distribution p(N, z) is concentrated on one of the n coordi-
nate vectors, so the set NV is partitioned into n (possibly empty) sets M;, with
x € M; iff p(N, z) = e;. The axiom SMi says x € M; = x+e; € M, : if the fill-
ing method gives the first unit to agent ¢ when the urn content is , then agent ¢
receives all subsequent units. Symmetrically, SM' says x € M; = v —e;. € M; :
if agent ¢ receives the first unit at urn x, she is also the first to be served whenever
her share is smaller.

Definition 1 A (deterministic) standard of comparison is a linear ordering -
of N x N, increasing in the second coordinate: (i,z;) < (i,x;+1) for all (i,x;) €
N X N. The =-winner—takes—all method is the markovian filling method:

p(N,x) =e; < (i,x;) = (j,z;) for all j € N\i
The =—equalizing method is the markovian filling method:
p(N,.’L‘) =€ = (],CL']) - <Z>xz) fO’F G,llj € N\Z

For instance, let N = {1,2,...,n} and > be the almost symmetric standard:

(¢, i) > (J, ;) iff {&; > x;} or {z; =x; and ¢ < j}

Starting from an urn (z1,..., z,) the winner-takes—all method gives all units
to an agent with the largest share, whereas the equalizing method gives the
next unit to an agent with the smallest share. If N contains only two agents,
a markovian filling method meeting SM ! (resp. SM') is the winner—takes—
all (resp. equalizing) method associated With the following standard: (i, x;) >
(J,z;) iff p(x) = e;. In order to generalize this statement to an arbitrary, finite

10



or infinite, set A/ we need the Consistency property, which in the deterministic
case reads as follows:

ri(N,z,t) = rj(N\i, x_;, t — (N, z,t) + x;) for all N,z,t,i and j,i # j

If agent ¢’s share is y; when ¢ units are shared among the agents in N with
claim profile x, then the allocation of ¢t — y; units among N\ with claims x_;
matches the allocation of ¢ units among V.

Proposition 1 A deterministic filling method is markovian (1), consistent (2)
and share monotonic, (5), if and only if it is the =—winner—takes—all method
associated with a standard of comparison > .

A deterministic method is markovian, consistent and share monotonic_(6),
if and only if it is the =—equalizing method for a standard of comparison > .

Note that it is enough to assume the weak form SM_ of Share Monotonicity.
(see Remark 1) for the ”only if” statement.

Remark 3 In the case of urn-emptying methods (Remark 2), Proposition 1~
in Moulin and Stong [2000] describes the set of methods characterized by the
Markovian property, Consistency and Share Monotonicity, (see Remark 2).

These methods are the direct counterpart of the equalizing methods in Propo-
sition 1. For a standard >, i.e., an ordering of N'xN increasing in the second
coordinate, the first unit of deficit is taken away from x; iff (i,x;) is the largest
claim:

r(N,z,1) =z —e; & (i,2;) > (j,x;) for all j #i

As the urn empties, this method equalizes the claims (i,x;) with respect to
the standard > .

4 Polya-Eggenberger filling methods

Definition 2 Choose for each agent i in N a positive weight \; — a positive real
number — and denote by \ the N'—profile of these weights. The A— Polya-Eggenberger
filling method is the following markovian method:

% for all N,z and i (7)

The A—fized chances filling method is:

pi(N,z) =

pi(N,z) = A for all N,z and i (8)
AN

11



The interpretation of formula (7) is clear. The urn contains balls of different
colors, one color per agent. There are x; balls of color i plus a fixed number
A; (that may not be an integer) We draw at random a ball from this urn and
replace it with two balls of the same color.

The Polya-Eggenberger (in short P.E.) urn-filling methods are a familiar
example of discrete stochastic process, and their statistical properties are well-
known: see Chapter 4 in Johnson and Kotz [1977]. Starting from an urn (N, x),
the expected value of r(N, z,t) — the urn’s content after ¢ balls have been added
— is:

t

E[r(N,z,t)] =2 + ———
r(No )] =7+

A+ 2x)

where \ stands for the projection of A on RY. The random variable {r(N,z,t) —
x}/t converges in probability to the distribution on the N—simplex with density
Cyprto=t goetea=l gAnten—1 with respect to the Lebesgue measure (C' is a
normalization parameter). For instance, with A; = 1 and z; = 0 for all 7, the
probability distribution of r(N,t,x)/t converges to the Lebesgue measure on
the N—simplex.

The A — P.E. filling method is share monotonic, : increasing agent i’s share
x; strictly increases the probability p;(V, x); property (5) can be checked with
a little more work. The A—fixed chances method is both share monotonic, and
share monotonic_ .

Unlike the winner—takes—all methods of Proposition 1, a P.E. or a fixed
chances method never leaves out any agent from the distribution process: every
agent has a positive probability of receiving the next unit, a property that we
call

Positive Shares (PS) : p;(N,z) > 0 for all N,z and 4 9)

Positive shares is a strong requirement, ruling out for instance all determin-
istic methods. However, many of the equalizing methods of Proposition 1 meet
a weaker property, namely they guarantee that no agent is ever left out if we
look far enough in the future:

Positive Future Shares (PFS) :  for all N,z and 1,
there exists ¢t such that E[r;(N,z,t)] > z; (10)

Positive future shares rules out the possibility that starting from urn =z,
a certain agent ¢ never receives any of the units distributed in the indefinite
future. Thus PFS is a mild requirement, that only rules out extreme methods
such as the winner—takes—all of Proposition 1.

Theorem 1 Assume |N| > 3. The family of the A— Polya-Eggenberger (7)
and the A—fized chances (8) methods, when X\ varies over all profiles of posi-
tive weights, is characterized by each one of the two following combinations of
arioms:

12



i) Markovian Property (1), Consistency (2), Share Monotonicity, (5) and
Positive Future Shares (10);
it) Markovian Property (1), Consistency (2), and Positive Shares (9);

In Appendix 2, we discuss the family of methods meeting Markovian, Con-
sistency and Share Monotonicity , . It contains many hybrid methods, combining
winner-takes-all, P.E. and fixed chances methods.

Checking further that the two characterization results are tight is easy with
the help of the two examples (3), (4) in Section 2 and of Proposition 1. We omit
the details.

None of the axioms listed in Theorem 1 requires a symmetric treatment of the
agents, indeed the methods thus characterized allow for an arbitrary degree of
systematic discrimination by adjusting the weights A. Consider the basic equity
requirement known as:

Equal Treatment of Equals (ETE): for all N,xz,t,i and j

x; = x; = (N, x,t) and r;(N, z,t) are identically distributed  (11)

Under ETE, the family characterized in Theorem 1 reduces to the (unique)
symmetric fixed chances methods (\; = 1, all 4) and to the one-dimensional
family of symmetric PE methods:

Ao + T .
i(N,r) = ——— for all N,|N| = 11
pi(N, z) P P or all N,|N|=mn, all z and ¢

where A\ is a positive number.

Remark 4 In the urn-emptying model, the counterpart of the Polya-Eggenberger
family of methods is a single method called the proportional method and defined
as follows. At urn x, the probability that the first unit is taken away from agent
i is proportional to x;. This method is characterized in Moulin [2000b] by several
combinations of axioms. One result in particular (statement i in Theorem 3)
is the direct counterpart of statement ii in Theorem 1 above: the proportional
method is characterized by Consistency, the Markovian property and Positive
shares (every agent has a positive probability of losing the next unit; this prop-
erty is called Positive Risks in Moulin [20000]).

On the other hand, Positive Future Shares has no counterpart in the urn-
emptying model, and the combination of Markovian, Consistency and Share
Monotonicity, is not enough to capture the proportional method alone: more on
this combination in Remark 5 at the end of the next section.

The fized chances methods of the urn-filling model are easy to adapt in the
urn-emptying one. Given an urn x, only the agents in the support of x,z; > 0,
can lose the next unit; a fired chances method assigns the probability of losing
the next unit among the agents in the support of x, in proportion to some fixed
weights A. However, this method is not consistent, as we show now.
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Consider the (markovian) method giving equal chances of losing the next unit
to all agents in the support of x. Then for N = {1,2,3},2 = (2,1,1) and t =2
we have:

proba{r(N,z,t) = (1,1,0)} = %;
proba{rs(N,z,t) = 0}= %;
proba{r({1,2},(2,1),1) = (1,1} =3

5 11 1
but 18 13 X 3

5 Equalizing methods

We investigate the markovian and consistent filling methods satisfying Share
Monotonicity . We already know two subsets of this family, namely the equal-
izing methods of Proposition 1 and the fixed chances methods (8). Theorem 2
below shows that the general methods combine these two ingredients as well as
some restricted proportional methods.

We introduce some notations toward the statement of Theorem 2. Given a
—possibly infinite- subset M of A/, a M—interval is a subset [a, b[ of N™ defined
by the inequalities a; < z; < b; for i € M. We assume a; < b; < 400, i.e., b;
could be infinite. For any finite subset M of M, we abuse notations by saying
that the M —vector z is in [a, b] if a; < z; < b; for all i € M.

We say that the M-interval [a,b[ is bounded if b is bounded (b€ NM).
We call |[M| the type of our interval. Thus the properties a certain interval is
bounded, and its type is finite, are logically independent.

We define next a filling method 7 restricted to a given M—interval [a, b[. For
any finite subset M of M, any M—vector z s.t. a; < z; < b; for all i € M and
z # b, and any integer ¢t,1 < t < by; — zps, the method specifies a M-random
variable 7 (M, z,t) = Y, where Y; is integer-valued, z; < Y; < b; for all i € M,
and Yy; = zps + t. Notice that whenever z; = b; (which can only happen if b; is
finite) the restricted filling method never gives anymore units to agent i.

It is straightforward to extend the definitions of the Markovian property
(1), Consistency (2) as well as Share Monotonicity. (5), (6) to a restricted
filling method. A markovian method is represented by a probability distribution
p (M, z) defined for all M—vectors z,a < z < b and z # b, and such that

An example of interest is the proportional method restricted to a given
bounded M-interval [a,b]. This is the following markovian method. For all
finite subset M of M and all M—vector z,a < z<band z#b:

14



bi—Zi

pi(M,z) = forallie M (12)

bM—ZM

Note that this method is Share Monotonic .

Definition 3 A probabilistic standard of comparison (in short, a standard) is
a pre-ordering (complete, transitive) = of N'xN, non-decreasing in the second
coordinate: (i,x;) 3 (i,z; + 1) for all i, ;.

We call (i,2;) a claim by agent i.

An indifference class of the standard 7 takes the form 'e%v( {7} % [as, bi,
j

where M is a subset of N and a; < b; < 4-00. We shall represent an indifference
class of 7 as the M-interval [a,b[. We call |[M| the type of the indifference
class.

Given an urn (N, z), we write M (z) for the subset of agents ¢ whose claim
(i,2;) is minimal with respect to a given standard Z:

M(z)={ie N | (i,z;) 3 (j,z;) for all j € N} (13)

The M(z)-interval representing the minimal indifference class of = at x
(i.e., the indifference class of (i, x;) for all ¢ € M(x)) is denoted I(z) = [a, b[ (for
simplicity we do not make a, b depend explicitly on x).

Note that M(x) = M(z) N N. We call |[M(x)| the type of the urn (N, z).
If the type of (z, N) is 1, the standard has a unique smallest claim (7, z;) at z,
but the converse is not true: M (z) may be a singleton while M(z) is not.

Definition 4 Let 7, be a standard of comparison such that either all indiffer-
ence classes are bounded, or there is exactly one unbounded class, namely a
N —interval [a, +o0o[ (b; = +o0 for all i). In the latter case, the unbounded class
is the highest indifference class of = .

A 7 —equalizing wrn-filling method is defined by choosing for the unbounded
indifference class (if any) a N'—profile X of positive weights, and for each bounded
indifference class [a, b] of type 2 (if any), a markovian filling method p restricted
to [a,b].

The = —equalizing method is markovian. For any uwrn (N,x) not of type 2
the support of p(N,x) is M(x), moreover:

o if the type of (N,x) is at least 3 and I(x) = [a,b| is bounded, our method
is the proportional method restricted to [a,b[:
bl‘ — X

d for all i € M(x)

pi(N, o) =
(N,2) bar(e) — T(a)
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o if the type of (N,z) is at least 3 and I(x) = [a,+oo[ is the unbounded
indifference class, then M (x) = N and our method is the A\—fized chances:

Ai

AN

pi(N,z) = allie N

o if the type of (N, z) is two (so I(x) = [a,b] is bounded), our method is the
given method p restricted to [a, b[:

pi(N,x) = pi(M (), 2pr(ey)  for all i € M(x)

(where [y denotes the projection of x on NM)

The above definition exhausts all cases because if (V, z) is of type 1, M (z)
reduces to the unique agent ¢ whose claim (4, z;) is 22 —minimal.

The last definition before stating Theorem 2 is related to the property Pos-
itive Future Shares. We say that a standard 7 is archimedian if for all claim
(¢,2;) and all j, j # 4, there exists a claim (j, ;) such that (¢,2;) < (j,2;). This
says that any claim by any agent can be reached in the standard by a large
enough claim of any other agent.

Note that a standard - with an unbounded N—class [a*, +00[, as in Defini-
tion 4, is archimedian.

Theorem 2 Fuvery - —equalizing filling method described in Definition 4 is con-
sistent. It meets Positive Future Shares if and only if the standard = is archi-
median. It is share monotonic_ if and only if each method 7 restricted to a
bounded indifference class of type 2 (if any) is share monotonic_.

Conversely, assume |N| > 3. A markovian and consistent filling method,
satisfying Share Monotonicity_ and Positive Future Shares, is a 7 —equalizing
method as in Definition 4.

The family of methods described in Definition 4 is not simple. A more intu-
itive subset consists of its equitable members, in the sense of Equal Treatment
of Equals (11).

We describe first the symmetric standards of comparison. Observe that any
partition of N in disjoint intervals is described by a finite or infinite strictly
increasing sequence in NU {+oc},a’ = 0,a',...,a", ... such that supk{ak} =
+00. The partition consists of the intervals [a¥, a**1[; if it is finite the largest
element in the sequence is +o0.

Given such a sequence, we define for all z € N, 7(z) = k iff a* < 2 < a**1,
and call 7(z) the trace of z in this partition.

A standard of comparison 7 is symmetric if (¢,z;) ~ (j, x;) whenever x; =
x; : two claims of identical sizes are regarded as equivalent by the standard. A
symmetric standard is represented by an increasing sequence a® = 0, a!, ..., a*, ...
such that sup,, a* = +oo :

(6, xi) Z (G 5) iff 7(xi) =2 7(x5) (14)
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and conversely every such sequence defines a symmetric standard. Note that a
symmetric standard is archimedian.

Fix a symmetric standard 7 . For any urn (N, z), we have M (z) = arg min 7(z;)
and I(z) = [a*.1,a**1.1] where k = min; 7(z;) and 1 is the N-vector with all
coordinates equal to 1. Note that if I(x) = [a*.1, 00[, we have 7(x;) = k for all
i and M(xz) = N.

Corollary to Theorem 2
Fix a symmetric standard - represented by the sequence a® = 0,a’, ...,a", ...
as above. Consider the following markovian filling method:

for all (N,x), let k = min7(x;) and m(x) = |M(z)|

abtl _ g

if a"™ < 4001 pi(N,x) =

fori e M
@) 2, or i € M(x)

=0 fori¢ M(x)

1
if "1 = 400 : pi(N,z) = — forall i
n

This method is consistent, share monotonic_ and satisfies Equal Treatment of
Equals (11).
Conversely, assume |N| > 3. There are no other markovian, consistent fill-
ing methods meeting Share Monotonicity_ and Equal Treatment of Equals.
Each method in the above family is determined by a sequence a’ = 0,a’, ..., a
...or, equivalently, a partition of N in intervals. The coarsest partition, a® =
0,a' = +o0, yields the equal chances method (p;(N,z) = 1/n for all N,z and

i). The finest partition, a* = k,k = 0,1, 2, ..., yields the method:

k

)

p(N, x) is uniformly distributed over argmin x; (15)

This method is closest to the deterministic equalizing methods of Section
3. Among all methods described in Theorem 2, it deserves best the name
equalizing. If two agents have identical shares in urn (N, x) then no matter how
many additional units are distributed, the shares of these agents never differ by
more than one unit:

x; = x; = |rj(N,z,t) — ri(N,z,t)| <1 for all N,z,t,i and j (16)

One can show that the method (15) is characterized by the combination of
Share Monotonicity _ (6), Equal Treatment of Equals (11), property (16), and
the Markovian property (1)°.

5The proof is very similar to that of Theorem 1, statement b in Moulin and Stong [2000].
It is omitted for brevity.
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Remark 5 The main result (Theorem 2) in Moulin and Stong [2000] charac-
terizes all the markovian, consistent and share monotonic, urn-emptying meth-
ods. Their structure is similar to that of the filling methods in Theorem 2 above.
There is a standard of comparison - and at urn x the agent who loses the next
unit is among those with the smallest claim (i,x;). Within an indifference class
of type at least three, a restricted proportional method is used. The only differ-
ence is that the fized chances methods play no role any more (recall from Remark
4 that such a method is not consistent in the urn-emptying model).

Not surprisingly, the proof technique of our Theorem 2 follows closely the
proof of that result.

6 Invariance under Transfers and Order Inde-
pendence

We introduce a powerful independence property that both the fixed chances and
the Polya-Eggenberger methods satisfy. In turn this leads to a new characteri-
zation of (a variant of) this family.

Independence of Transfers is one of the oldest ideas in the axiomatic lit-
erature on fair division according to claims (Banker [1981], Moulin [1987], De
Frutos [1999]): it rules out the profitability of interpersonal transfers of shares.

Invariance under Transfers (IT): for all N,z,2’,t and all S,S C N

{zs = algjx;=ua) foralli¢ S} =
{rs(N,z,t) and rs(N,’,t) are identically distributed} (17)

The IT axiom rules out the following kind of strategic maneuver. A coalition
S of agents transfers some of the shares of its members, thus transforming the
initial profile (z;,i € S) to (z},i € S); feasibility of these transfers requires
rs = T. When ¢ units are distributed, the total share accruing to coalition
S may be affected by the transfers: in this case, these agents can manipulate
the method to their mutual advantage by a combination of transferring shares
twice, before and after the filling method is applied.

Under IT, individual shares are like anonymous bonds that can be passed
around between players without affecting their ”returns”. An important conse-
quence of property (17) is that the probability distribution of agent i’s share Y;
only depends upon his initial share x; and the aggregate share of the agents in
N\ : (N, x,t) takes the form p;(N, z;, xn,t)°.

Clearly the fixed chances and P.E. methods in Definition 2 meet IT. On the
other hand, a winner-takes-all or an equalizing method in Definition 1 violates
this property. The same is true of most equalizing methods in Definition 4: for

6This follows from applying (17) to S = N\i. The converse property is just as easy: if the
distribution of Y; only depends upon z; and zp, then IT holds.
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instance, from the family described in the Corollary to Theorem 2, only the
fixed chances methods pass the IT test.

Our last axiom expresses that the distribution of successive units in the urn
is equally likely in any ordering of the recipients.

Given a markovian filling method r and an urn (N, z), the successive allo-
cation of ¢ units generates a random sequence in N, o = {i1, iz ..., 4}, where i
is the agent receiving the k — th unit.

We say that two sequences o = {iy,...,%:} and ¢/ = {j1,...,5t} in N are
permutations of one another if we can write ji = i, for k = 1,...,t, where p
is a bijection from {1, ...,t} into itself.

Order Independence (OI) : for all N,z and ¢

o = {j1,...,Ji} is a permutation of o = {i1,...,9;}

= {0 and ¢’ are equally probable under r at (N,z)}

If p(N, x) is the probability distribution of the first unit, the OI property is:

t—1 t—1
pn(x) Diy (:E + 611) """ Pi, (‘r +Z eik) = Dj (ll’)-ij (JZ + ej1) """ Dj, (:E +Z 6]k)
1 1
whenever ¢ and ¢’are permutations of one another. (18)

Order Independence does not place any direct restriction on the aggre-
gate distribution of ¢ units, namely on the distribution of the random variable
r(N,z,t). For instance, it is satisfied by a ”dictatorial” method allocating all
units to a certain agent ¢* (the dictator) irrespective of the urn (N,z): all
sequences o generated by this method are constant at i; = ¢*. The winner—
takes—all methods of Proposition 1 meet OI for the same reason.

Order Independence is a neutrality property, stating that no agent is system-
atically served earlier than another agent when units are distributed sequentially.
If —say—, N = {1,2} and agent 1 must receive on average twice as many units
than agent 2 when one hundred units are distributed, then he is equally likely
to receive all his units first or all units last, or in any other timing.

Note that OI does not make sense for a non-markovian filling method r,
because the independent draws of e;,, e;,,... do not sum to a (random) urn

t
Y =2 4> e, with the same distribution as r(N, z,t).
1

A fixed chances method (8) satisfies Order Independence: this is obvious on
equation (18). A P.E. method meets OI as well, as shown by developing both
sides of (18) with the help of (7). On the other hand, the equalizing methods of
Definitions 1 and 4 fail OI.

The three axioms M, IT and OI involve a fized population: they do not
impose any relation between the methods to fill urns (N, z) and (N’,2') when
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N and N’ are two different ”populations”. Therefore we fix a finite population
N in our next result.

Theorem 3 Fiz the finite set N of concerned agents and assume |N| > 3. To
a profile of non-negative weights A\;,i € N, not all zero, we associate three (fixed
population) markovian urn-filling methods:

i) fized chances: for all i

Ai
(N _
pi(N, z) pye

i) quasi-proportional: for all x,i

P i
pi(Nax):_x if ey > 0,pi(N,0) =
N /\N

i11) Polya-Eqgenberger:

iN,J? =
p( ) AN + 2N

for all x4
These methods are independent of transfers and order independent. Con-
versely, there is no other markovian method meeting IT and OL

In Appendices 6 and 5, we discuss two families of methods characterized
respectively by the 3 axioms M, CSY, IT, or by the triple M, CSY, OI. We
show that (almost) all such methods satisfy Share Monotonicity, . It follows
that if we add PFS to the list of requirements, we are back in each case to the
fixed chances and P.E. methods of Theorem 1. On the other hand, when PFS is
not required, the combination M, CSY, IT captures new methods mixing fixed
chances, P.E. and proportional in interesting ways. By contrast, the triple M,
CSY, OI has essentially the same bite as M, CSY, SM, discussed in Appendix
2.

Remark 6 In the urn-emptying model, the proportional method meets Indepen-
dence of Transfers and Order Independence. In fact, OI is essentially a rewriting
of the definition of this method and IT is enough to single out this method among
all markovian methods”. Thus either one of the two axioms IT and OT leaves
no choice whatsoever to the mechanism designer in the urn-emptying case.

"This result is not to be found in the two companion papers, that discuss neither IT nor
OI. It is an easy consequence of Step 1 the proof of Theorem 3 in Appendix 3.
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7 Bayesian filling methods

Now let us consider the methods that satisfy just M and OI. Since M and
OI do not make use of a variable population, we may assume that there is
a fixed population N. Let X(N) = {(pi)ien : 0 < p; < 1, and > ,cypi =

1} be the |[N| — 1 dimensional simplex and let EJ(N) denote its interior. We
may think of a point in X(IN) as an assignment of a probability to each of
the agents. A Bayesian assignment method is determined by the choice of a
probability measure 7 on Borel subsets of ¥(N), with the technical restriction

o

that w(Z(N)) > 0.

Given such a measure, we can describe the Bayesian method in either of
two equivalent fashions. For any vector a = (a;);eny of non negative integers,
define the ath moment to be M(a) = fE(N) ]e_][vpf dm(p). Note that because of

K3

our technical assumption, M (a) > 0 for all a. Then we can define a markovian
urn-filling method by the formula p;(N,z) = M (x + ¢;)/M(x).
Alternately, define measures m,, by

Ja I pi dn(p)
iEN

)= fz(N) le_Jvaf dr(p)’

Given initial claims of z, we choose a set of probabilities (p;);cn randomly from
Y (N) according to the probability measure 7, and then we color successive balls
independently at random according to the chosen probabilities. In Appendix 3
we will show that this is equivalent to the description above.

With these definitions we have the following theorem.

Theorem 4 An urn-filling method that meets the Markovian property, Order
Independence and Positive Future Shares is a bayesian method. Conversely, any
bayesian method meets the Markovian property, Order Independence, Positive
Future Shares, Positive Shares, and Share Monotonicity...

In Appendix 4, we give the proof of this Theorem and in the process also

give a rather complicated characterization of the family of methods satisfying
just the Markovian Property and Order Independence.
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APPENDIX 1: PROPOSITION 1 AND THEOREM 1

1. Proposition 1

The simple proof is similar to that of Proposition 1 in Moulin and Stong
[2000]. The ”if” statements are clear.

Let r be a markovian and consistent deterministic method meeting SM* (Remark
1). We write m(N,z) = ¢ whenever p(N,z) chooses ¢ with probability 1. We
write () for simplicity when the set of coordinates of the profile x is clear. For
instance 7(z;e; + xje;) stands for w({i, j}, z;e; + x;e;). Define a binary relation
—=on N xN:

(t,25) = (Jyz;) ff {i=4j and z; > x;} or {i # j and 7(x;e; + xje;) = i}

Clearly > is complete and antisymmetric. It is transitive as well. For in-
stance assume ¢, j, k are all different and

mw(zie; +xe5) =1; w(rie; +xper) =J

Consistency implies:

w(zie; +xjej + xper) = J=w(zie; +xie5) =]
7T({L‘Z‘6i + ZTje; + mkek) = k= 7T(£Uj6j + xkek) =k
Therefore 7(z;e; + xje; + xper) = 4, implying m(x;e; + xrer) = i, as desired.

Checking transitivity when i, j, k are not all different, is easy with SMi.
Repeatedly applying CSY at an arbitrary urn (N, z),we get:

m(N,z) =i=nm(N\k,z_k) =i = ... = 7(ve; + xje;) =1 (19)
for any pair 4,7 in N. Thus n(N,z) = ¢ implies (¢,2;) > (j,z;) for all j
in N\, and r is the = —winner—takes—all method of Definition 1 as desired.

Turning to the case of a markovian and consistent method meeting SM*!, we
define the relation > as follows:

(t,25) = (j,z;) iff {i=jand x; > x;} or {i # j and n(z,e; + z;e;) = j}

One checks as above that > is a linear ordering of A/ x N. The only difference
is when checking transitivity in cases where i, j, k are not all distinct, e.g.:

(i,2;) = (i,2;) and (i,2)) = (4,2;)
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Here z; > 2} and p; (2e; + xje;) = 0, so SM! implies p; (vie; + zje;) = 0
as desired.
Property (19) implies that r is the =—equalizing method of Definition 1.

2. Theorem 1

Statement ii

We fix r, a P.E method (7), and check that it is consistent. For any positive
integer a and non-negative integer b, we use the notation (a,b)! = a.(a+1).(a+
2).....(a + b — 1) with the convention (a,0)! = 1.

Fix N,z,t,y and consider a sequence o in N where j appears z; = y; —
x; times, for all j. The probability that o is the realization of ¢ independent
successive allocations of one unit according to (7) is:

(/\1 + 21, Zl)'(An + T, Zn)!
()\N + :L’N,t)!

proba(o) =

Because r is markovian, the probability distribution of r(N,t,x) obtains
from ¢ successive independent allocations of one unit, therefore:

t! ()\1 —|—£L‘1,Zl)!...(/\n—I—CL‘n,Zn)!

proba{r(N, z,t) =y} = —=———. O + 2y, 1)

similarly

t! ()\1—|-.7}1,21)!()\N\1 +xN\1’ZN\1)!

proba{ri(N,z,t) = yi} = Zlev! O +2n,0)!
and equality (2) follows easily.

For a fixed chances method (8), Consistency can be checked in similar fash-
ion. Alternatively, we can use the fact that a fixed chances method is the limit
of a sequence of P.E. methods where the ); all tend to infinity at the same rate.
Since the CSY equation is a rational function of the \;, it follows that the limit
method is consistent.

Thus all P.E. and fixed chances methods are consistent, and they obviously
meet PS.

We turn to the converse statement . Fix a markovian and consistent method
r meeting PS. Consistency (2) applied to t = 1 gives:

pi(Na l’) = (1 7pj(Na LE))pZ(N\'],x_]) for all Naxaiaj (20)

PS implies 0 < pg(N,z) < 1 for all N, z, k. Applying (20) repeatedly:

pi(N, ) :p(ze +j¢)) for all N,z,1,j (21)
pj(]\/'7 33) pj(l'iei +xje;
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(where p;(z;e; + z;e;) stands, as usual, for p; ({1, j}, zie; + xje;)).
By assumption N contains three distinct agents 1,2,3. Set N = {1,2,3},
choose z in NV and compute:

]2(.%‘161 +$2€2).@<.’L‘262 + $363).p—3($1€1 + 1‘363) = ﬂ(N, x)@(]\], x)@(]v’ .CL’) =1
P2 p3 P p2 p3 P

Fixing 3, say x3 = 0, the above equation shows the existence of two positive
functions fi(x1), f2(x2) such that:

T
]2(%161 + x9€2) = h@y) & pi(z1e1 + x2e2) =

P2 fa(z2)

fi(xi)
fi(z1) + fa(z2)

fori=1,2.

Repeating the argument for all pairs {i,j} from {1,2,3}, and then for all triple
{i,4,k} in N, we conclude that there exists for all i € A/ a positive function f;
such that:

fi(x:)
filxi) + fi(x))

In view of (21) this equally extends to:

pi(zie; + xje;) = for all i, j, z;, z;

fi(xi) ,
pi(N,z) = =——+— for all N,z,i (22)
>on fil@;)
The last step of the proof is to show that all functions f; are affine and have
identical slopes. For this we must apply CSY (2) to the allocation of at least
two units®. Fix N = {1,2,3} and z = (21,72, 23), and invoke CSY:

proba{r(N,z,2) = (1,1,0)} = proba{ra(N, z,2) = 1}.p1(z1€1 + x3€3) (23)

We develop these two probabilities with (22) and the Markovian property.
For simplicity, we write a; = f;(x;) and b; = fi(z; + 1) :

a1 az as ay
proba{r(N,z,2) = (1,1,0)} = _ 4 .
o ) ( )} ajes by +ass  aiss by +ais
proba{ra(N,z,2) = 1} = ax as az a13 as as

ai23 b1 +ag3 a1z ba+aiz  aies bz +ain

Developing (23) gives now by — a; = bs — ag, namely fi(x; +1)— fi(a1) =
fa(xs + 1)— f3(x3). As the agents 1,3 and the shares x1,x3 are arbitrary, we
conclude that all functions f; are affine and have the same slope. Because

8The following proof is similar to that of Theorem 3 in Moulin [2000b].
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fi(x;) > 0, this leaves only two cases. If the f; are all constant, we have a
fixed chance method; if they are all increasing at the same pace, we have a P.E.
method.

Statement i

Choose a markovian and consistent method r meeting SMi and PFS. We
prove below that it satisfies PS as well, so the conclusion follows from the
statement ii just proved.

Suppose p1(N,z) = 1 for some N,z. Then by SMi and the Markovian
property, the urn (N, z) will be filled exclusively for agent 1, for any ¢, which
contradicts PFS. Thus p (N, z) < 1.

Suppose now p1 (N, x) = 0 for some N, z. By (20) and the fact that p is never
deterministic, p; (N’,2’) = 0 holds for any subset N’ of N containing 1, if 2’ is
the projection of x, and for any superset N’ of N if x is the projection of x’.
Thus we can assume N = {1,2,3}. From (20) again we have:

pi(zier +x3e3) =0 = pi(N,z+e) =0

And by induction p; (N, z’) = 0 for any 2’ such that ) = x1, and =} > =; for
i = 2,3. But this contradicts PFS because the urn (V, z) will be never be filled
with any ball of color 1.

APPENDIX 2: PROOF OF THEOREM 2 AND A
GENERALIZATION OF THEOREM 1

1. Theorem 2

Step 1. An equalizing method is consistent

We fix a 7 —equalizing method r as in Definition 4. We also fix an urn
(N, 2°). We construct first an increasing sequence x°, 2, ..., 2%, ...corresponding
to the successive indifference classes I(y),as y varies in the support of r(N, z,t).
The important fact is that the sequence is deterministic: for any ¢, all realiza-
tions of Y = r(N, z,t) lead to the same class I(y).

Given any urn (N, z) we define a vector s(z) in NV as follows:

s(x); = b ifie M(x)and I(x) = [a,b]
s(x); = x; ifj¢ M)

Note that s(z) > z, s(x) # z. By definition 4 if ¢ is in the interval 1 < ¢ <
sy(x) — xp, the support of (N, x,t) remains in [z, s(x)] and for any y in this
support, with the exception of s(x),I(y) = I(z) and s(y) = s(z). Note that
s(z) is unbounded only if I(x) is the unbounded indifference class [a,+oo] of
Definition 4.
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We define inductively the sequence z*, by z¥*1 = s(z*). The successive in-
difference classes I(z*) are increasing. If one such class is [a*, +00], the sequence
stops there, otherwise it is unbounded. We let 7 to be the filling method re-
stricted to I(z*) as in Definition 4. Note that each method 7* is consistent:
this is clear for the proportional and fixed chances method, and for a method
restricted to an interval [a, b] of type 2, Consistency is vacuously true. This is
all we need to show the Consistency of r.

Set M* = M (2*) and t* = 2%, — 2%, so the sequence #* is strictly increasing
and supy, t* = 400, whether the sequence z* is finite or infinite. Now 7(N, ¢, 2°)
is computed as follows:

let k be defined by t* < ¢ <t

ri(N, 2% t) = Fik(Mk,:chk],t—tk) if i € M*

= gF =gt ifi¢ M (24)

Note that 2% < r(N,2°,t) < 2P+,
#

We claim that the sequence (v_;)*, k = 1,2..., for the urn (N\i,2?,) is
simply (2¥)_;, k = 1,2, the projection of ¥ on N\i. Indeed, s(z_;) = (s(x))_;
whenever M (z) # {i}, and s(z_;) = z_; when M (z) = {i}. Therefore the claim
is true, provided we allow a repetition, z¥, = 2", every time M(z*) = {i}.
We set té‘;i) = x’}vv — m?v\i.

We are now ready to prove CSY, namely equation (2), where we fix ¢,t* <
t < t**1 an agent 1, and a profile y in the support of 7(N,z° t), namely

¥ <y < 2! and yy =t (if y is outside this support, both sides of (2) are
=

obviously zero).
We distinguish two cases. First we assume 1¢ M*. In this case y' = 2% =

2+ implying proba{ri(N,z,t) = y1} = 1. Moreover:

ty <t" =y a2} <t -y +a] < —yn +al =401

Formula (24) gives:
proba{r(N,z° t) = y} = proba{r*(M"*, xfch]7t —t") =y}
similarly, as M (z*,) = M*, (24) gives

pTOb@{r(]\Nl,m(ll,t—yl +1'1) = yfl} =
proba{r* (M*, fok], t—y +af — t’(‘;l)) =y}

The desired quality follows from y; = a2} = y; — 29 + t’(“_l) = tk.
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The second case is when M* contains 1, so that ¥ < 2§™. We check first:

k k

ty <t =y 42y <t (25)

Note that ¢ — t* = ypx — 25 ., because y; = 2% for all j ¢ MPF (see (24)).
Moreover zF < y < 2kt Using the notation Mk = Mk\l we compute:

to= ya — b+ ok — 2% = (i — 25 + (- 2f) + 1y,

=y -l iy St <l -l by - el gy =t g —al
implying (25).

By Consistency of 7, we have:

proba{?k (M’“7 xf“Mk] Jt— tk) = Ymr )t =
proba{r (M*, xf“Mk] Jgt—th = gk
k

proba{* (M ~1 ,xfﬂk],t —th—y —ak) = y[]f\;[k]}

By (24), the left-hand and the middle probabilities in the above equality are,
respectively, proba{r(N,z°t) = y} and proba{ri(N,z°,t) = y;}. The right-
hand probability is proba{r(N\1,z_1,t —y1 +29) = y_1} by virtue of inequal-
ities (25), of (24) applied to N\\1, and of the identity (¢t — y; + 29) — té“_l) =
t—tF — oy + k.

Step 2

We check that a method in Definition 4 meets Positive Future Shares if
and only if = is archimedian. Assume 77 is archimedian. Suppose (10) fails at
some N, z, 4, namely r;(N,x,t) = x; with probability 1 for all ¢. In terms of the
sequence starting from x constructed in Step 1, this means i ¢ M* = M(a*)
for all k = 1,2,... If the sequence x* is finite, at some point I(z") = [a*, +-o0]
and M* = N (because this is the largest indifference class, see Definition 4),
contradiction. If 2% is infinite, there exists an agent j and a subsequence k' of k
such that x?, is unbounded and j € M ¥ for all k. By the archimedian property,

(j, x?) > (i,x;) for k large enough, contradicting i ¢ MF.

Conversely, if » meets PFS, for all N,x,i there exists a term z* in the
sequence starting from x such that i € M. If we take the first such k, we have
(J,2%) z (i,2;) for all j.

If a method of Definition 4 is Share Monotonic_, all the restricted methods
r must meet SM_ as well. The argument is straightforward.

Conversely, let r be a method as in Definition 4 such that all restricted
methods 7 meet SM . To check that r is SM_, we must compare the two
sequences =¥ and z* generated respectively by 7(N, z,-) and 7(N,z +¢;,-) : see
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the construction of Step 1. Denote M* = M (%) and P*¥ = M(2*) and let k*
be the smallest integer such that i € M*. Then:

i ¢ PF=M"and 2k =2F+1 for k < k*

Pk = MF and 2* = 2* for k* < k
PF = MFNG if 2R R =1
PF = MM i gk 5

From this we deduce with the notations of Step 1, in particular t* = x’fv -

xn, and the symbol = for the fact that two random variables have identical
distributions:

ri(N,xz+e;,t) = ri(N,:v,t)—I—lforlgtgtk*
ri(N,z+e,t—1) = 7r(N,a,t) for t* 1 <t
ri(N,x+e;,t) = x;+1<ri(N,z,t)+1 for Tl <t§tk*+1, ifxf*ﬂ—zf* =1

The inequality (6) follows in each case. The only case left is t*~ < ¢ < t* +1
when xf*ﬂ — xf* > 1, so that P¥" = M*". In this case ri(N,z + e;,t) and

r;(N,z,t) are given by the same restricted method 7 as in (24):

ri(N,z+ei,t) = 7 (Mg, afype) + et —tF)
T'i(Naxat) = ﬁk*(Mk*7$ﬁ;k],t—tk*)

and (6) follows from the property SM_ of 7.

Step 3. Converse statement

Now we fix a markovian, consistent method r satisfying PFS and SM_, and
we must show that r is a method described in Definition 4. This proof is done
in three steps, and is similar to that of Theorem 2 in Moulin and Stong [2000].

In the first step we construct the standard of comparison - . Consider first
the binary relation R on /' xN :

(t,z;)R(j,x;) & {i=7 and @; > x;} or {i # j and p;(z;e; + xje;) > 0}

From CSY and SM? (i.e., p;(N,z) is non-increasing in z;), we check that R is
”almost” transitive in the following sense. If 7, j and k are all distinct:

{(l’ml)R(]a xj) and (]v 'TJ)R(]» 'T;)} = {(val)R (]7 x;)}
{(i,z:)R(i, 2}) and (i, 2))R(j,z;)} = {(i, )R (j,2;)}
{(Z’xl)R(]axJ) and (J? x])R(k7xk)} = {(val)R (kvxk)} (26)
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The top two statements follow easily from SM°. We check the bottom state-
ment, a consequence of CSY. Set x = x;e; + je; + wrer and apply CSY to
r(N,z,1) three times:

pi(x) = (1 —=pe(x))pj(zie; + zje5);pr(x) = (1 = pi(x)).pr(zje; + Trer);
pe(z) = (1—p;()).pr(zie; + zrex)

We prove the bottom statement by contradiction: assume p;(z;e; + xje;)
and pi(zje; + xpey) are both positive, whereas py(z;e; + xrer) = 0, and the
above system is impossible.

Note that R may not be transitive because chains alternating between two
agents are possible:

(4, 2:) R(j, x5) R(i, 27) R(j, 2 R...with @; > 27 > .. and x; > 2 > ... (27)

But (26) implies that these are the only inclusion minimal chains.

The standard of comparison - is the transitive closure of R. The indifference
classes of 7= will be represented, as usual, by M—intervals [a,b].

We check next that the support of p(NV, x) is contained in M (x), namely the
set of agents ¢ such that (j, z;) 2 (¢, ;) for all 4. For simplicity we write p(z) in
lieu of p(N, x).

Suppose p;(z) > 0. Then for all k in N\i, CSY implies p;(z) = (1 —
pr(2)).pi(x_r) hence p;(x_;) > 0. Repeating the argument, we find p;(x;e; +
xje;) > 0 hence (j,z;)R(i, x;) for all j € N\i. This means ¢ € M(x) because
7~ contains R.

Next we show that p(N,z) depends only on x[js(,). This amounts to show-
ing:

i¢ M(z) = p(x) =p(x+e) foral N,zandi (28)

If x, 2’ are such that M (z) = M(2’) and z, 2’ coincide on this subset, there
exists 2" with M («”) = M(z) and the same projection on M (zx), and such that
x < a” 2’ < . Thus repeated applications of (28) yield p(z) = p(z’).

To prove (28), we note that p;(z) = 0 (the support of p is contained in
M (x)), hence p;(x + e;) = 0 by SM°. For any j in N\, apply CSY twice:

pi(x) = (1—=pi(2)).p;j(z—i) = pj(z)
pi(zte) = (1—-pi(z+e))pi(z—i) = pjlz—)
establishing (28). We summarize the findings of Step 3. The method r is entirely
determined by the standard 7~ and its restrictions to each indifference class [a, b]

of 7: for any urn (N, z),p(N,z) is supported by M (z) and determined by the
restriction of p to I(x), namely p(M(x), 2(rr(a)))-

29



Step 4. The case of indifference classes of type at least 3.
Let the M —interval [a,b] be an indifference class of - such that |[M]| > 3.
We show that for all distinct ¢,j in M :

a; <x; < bi,aj < T; < bj =0< pi(xiei + l‘j@j) <1 (29)

By construction (j,z;) ~ (4,2;), but we need (j,z;)R(i,z;) to conclude
pi(zie; + xje;) > 0. Choose a third agent k in M, and set z; = ai. We have
(J,zj) zZ (k,zx) and (k,zx) Z (i,2;). We know from Step 3 that an inclusion
minimal chain from (j,z;) to (k,zx) or from (k,xy) to (i,z;) takes the form
(27). Linking two such chains and using (26) repeatedly, we find (j, ;) R(%, z;)!
Exchanging the roles of ¢ and j establishes (i, z;)R(j,z;) and (29) is proven.

Our next observation is that for all M C M, and all (M, z) in [a,b[, the
support of p(M,x) is exactly M. This implies that for all (N, z),if I(x) is of
type at least 3, the support of p(V, ) is exactly M(x) (we have seen in Step 2
that it is always contained in M (x)).

Fix (M, ) in [a, b]. If |M| = 2, property (29) shows that the support of p(z)
is M. If |M| > 3, we take 7 in the support of p(z), and two more agents j, k in
M. CSY implies:

pi(M’ :L‘) = (1 _pk(Mv x))'pi(M\ka x*k’)
pi(M,z) = (1—pe(M,z)).p;j(M\k,v_)

. pi(M,x)  pj(M\k,z_4)
= pi(M\k,z_;) >0 and (L) = (ko)

Repeat the argument to eliminate successively all agents in M\ {i,j} so that:

pj(M, l’) _ pJ(ZL’,ey +$j€j)
pi(M,z)  pi(zie; + xje;)

and the desired conclusion p; (M, z) > 0 follows from (29).

Step 5. Final argument

We are now ready to show that r takes the form announced in Definition 4
on its indifference classes of type at least 3.

Fix such a class, a M—interval [a, b[, where each b; can be finite or infinite.
By Step 4, the restriction of p to [a, b[ satisfies Positive Shares, therefore we can
duplicate the argument in the proof of Theorem 1, statement ii. We find there
exists for all i € M a positive function f;(x;) defined over [a;, b;[ and such that:

pi(M,z) = G for all (M, z) in [a, b]

B >on filzg)
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By setting f;(b;) = 0 in case b; is finite, the above equation now holds for any
r st. a<z<band z#b By SM°, f; is non-increasing.

We now develop equation (23), the application of CSY to the allocation of
two units among three agents 1,2,3 in M with shares z;,a; < x; < b;,1 =1,2,3.
Note that the computation only involves f;(x;) and f;(x; + 1), and so it unfolds
exactly as in the proof of Theorem 1, establishing fi(z1)— f1(z1+1) = f3(z3) —
fs(zs +1).

We have shown the existence of a non-negative slope s such that f;(z;) —
filx; +1) = s for all x; in [a;, b;[. We distinguish two cases:

Case 1. b is bounded: b; < +oo for all ¢ € M. From f;(b;) = 0 and f;(b; —
1) > 0, we get s > 0 and f;(x;) = s.(b; — x;) so p is the proportional method
restricted to [a, b|.

Case 2. b is unbounded: b; = +oo for some i € M. If by = +oo and by is
finite, we get f1(z1) — f1(x1+1) = fo(ba — 1) > 0, which contradicts fi(x1) > 0
for xy1 large enough. Therefore b; = +oco for all i € M.

We claim that M = N and that the N'—class [a, +00[ is the largest of 7 .
Suppose [a, +00™ [ is not the largest 2~ —indifference class; this can only happen
if M # N. We can pick agent 1 inside M, and agent 2 outside M, with a share
x2 8.t.(2,22) = (1,a). The urn ae; + x9es will be filled with 1—balls only, in
contradiction of PFS.

Suppose next [a, c0™[ is the largest indifference class and M # N. Now the
urn ae; + xoes will be filled with 2-balls only, for any x5, again a contradiction
of PFS.

In the N'—interval [a, +oo[, the equation f;(z;)— fi(z;+1) = s together with
fi(x;) > 0 implies that f; is constant, for all 4, therefore the restriction of p to
this interval is a fixed chances method, and the proof of Theorem 2 is complete.

Step 6. Corollary to Theorem 2

If = is symmetric, all indifference classes are symmetric of type |JN| > 3.
Therefore a class [a, b[ is either bounded or has b; = 400 for all i € M. This is
the only place in the proof of Theorem 2 where PFS was used. The rest of the
proof is routine.

2. A generalization of Theorem 1

By imitating the previous proof techniques, we can describe all the marko-
vian and consistent filling methods meeting Share Monotonicity, . We state the
result without proof. Each such method is associated with a standard of com-
parison 7 (Definition 3) with only three possible types of indifference classes
I:

e a singleton M—class, I = [a], where |M| > 3
e an unbounded M—class I = [a, +00[, where |M| > 3

e a class of type 2 or 1.
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For any urn (N, z), the probability distribution p(N,x) is concentrated on
the set Q(z) of agents i such that (i, x;) 2 (j,x;) for all j. The restriction of p to
an unbounded class [a, +oo[ (with |[M| > 3) is either a fixed chances or a Polya-
Eggenberger method. The restriction of p to a class of type 2 meets SMY (that
is, pi(z;e; +xje;) is non-decreasing in x;). If I(z), the highest indifference class
among (i,x;), is a singleton, the filling process is a ”winner-takes-all”: whoever
among Q(x) receives the first unit, will receive all the subsequent units as well,
because Q(x + e;) = {i} whenever i € Q(z).

The family of methods just described is precisely characterized by the com-
bination M, CSY and SM_ . These methods can be loosely described as mixing
winner-takes-all, Polya-Eggenberger, fixed chances, and methods involving two
agents. Yet the pattern linking these various components is too complex to
allow a more intuitive description of the family.

Nevertheless, the symmetric subfamily (i.e., M, CSY, SM, and ETE) is
simple. All indifference classes are either a singleton or unbounded and there is
an integer k*, k* = 0,1, ... such that for all urn (N, z) :

if ; < k*—1 for some ¢, p(N,z) is uniform over argmaxz;
1

V

if @ k* for all ¢, p(N, x) is the equal chances or a symmetric P.E. method.

These methods are a hybrid of the symmetric winner-takes-all if some shares
are below the threshold k*, and one of the symmetric methods of Theorem 1
when no share is below k*.

APPENDIX 3: PROOF OF THEOREM 3

Step 1.

We describe the consequences of M + IT.

By the markovian property, the urn filling is characterized by the probabil-
ities p;(N,z). However by IT, p;(N,z) depends only on i, x;, and z. Write
it as p;(N,z) = p;(x;,xn). Suppose |N| > 3, then applying IT to the coalition
{i,j} shows that

pi(zi + L,an) — pi(zi, 2n) = p;(1,2n) — p;(0,2n).

Since this holds for all i and j in N and all z; < N, we see that p;(N,z) =
pi(wi,xn) are all linear in x; with the same slope 6 = p;(1,2x) — p;(0,2N)
which is independent of j. There are three slightly different cases, positive
slope, zero slope or negative slope. We can combine these by saying that a
method satisfying M and IT has

_a(N,on)xi + (N, 2n)
pi(N,z) = a(N,zn)xny + AN, zn))

32



characterized by a set of non-negative weights \; (N, z ) and a “slope” a(N, zx)
which takes values in {—1,0,1} for each N C N with [N| > 3 and each zy > 1.
If a(N,zn) = 1, then \;(N, 2 ) can be any non-negative weights. If (N, zx) =
—1, then we must have \;(N,xzn) > xy for all i. If a(N,zx) = 0, then A(N, zn)
is only defined up to a scalar multiple and we must have Ay (N, zx) > 0. Note
that for fixed N (with |[N| > 3) and xy > 1, a and A determine p;(N, z) and
vice versa. If xy = 0, then the p; still have the form above, however p; does
not depend on and hence does not determine a(N,0). If |N| = 2, then IT is
vacuous and p; may not have the form above. However if it does have this form
we will continue to use the same notation.

Step 2.
We introduce now OI, that can be written as

pi(x)pj(x + e;) = pj(x)pi(z + ej)
and plugging in the form

a(mN)xi + )\i(:vN)
a(acN)mN + )\N({L‘N)

pi(z) =
we get

zi(a(zn)Aj(@n +1) —alzny + DAj(an)) + zj(alzy + 1DAi(an) —alzy)di(zy +1)) +

(Ai(@n)Aj(zy +1) = di(zn +1)Aj(zn)) = 0.
Since |N| > 3, we can take z; = x; = 0 giving
Ailzn)Nj(eny +1) = N(zn + DA (zN)
for all 7,5 € N and xny > 0. Summing over j € N gives
Ailzy)An(zy +1) = Ni(zy + DAn(zN).
If xny > 1, we can take 2; = 1 and x; = 0, hence
a(zy)Nj(zn +1) = alzy + 1)A;(2N)
for all j € N and xx > 1. Summing this over j gives
alzn)An(zny +1) =alzy + D)Anv(zN).

Consider the three cases for a separately. If a(zy) = 0, then Ay(zny) > 0
and hence a(zy + 1) = 0. Conversely if a(zy + 1) = 0, then Ay(zy +1) >0
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and hence a(zy) = 0. Thus if a(xy) = 0 for some zy, then a(xy) = 0 for all
xn. Further since

)\i(xN)/\N(xN + 1) = /\7(ZL’N + 1)>\N($N)

we see that (modulo an irrelevant rescaling) A(zy) is independent of zp. Thus
the method is a fixed chances method.

If one of a(xy) and a(xy + 1) is 1 and the other is —1, then we must have
Av(zy +1) = 0= Ay(zn). However if a(zy) = —1, then Ax(zn) > |N|zy >
0. Thus in either case we get a contradiction. Thus we see in any case that
a(xy) = a is constant.

If @ = #1, then A\j(znx + 1) = Aj(zn) for all j € N and xy > 1. Thus we
conclude that A\(xy) is independent of xx for xxy > 1. If a = —1, we must have
Aj(zn) > xn and hence a contradiction. Thus a # —1. If Ay(zn) # 0, then
as for the case a = 0, we see that A(zy) is constant and the filling method is
a PE method. If Ax(zn) =0, then A\;(zy) =0 for all j € N and all zy > 1.
However, we see that \(0) is arbitrary. Thus the method is quasi-proportional.
This completes the proof.

APPENDIX 4: Proof of Theorem 4

Consider the bayesian urn-filling method associated to a measure 7 described
in terms of its sequence of moments M (a). For any sequence o = {i1,49,...,4:}
with 3% _, €;, = y — x one easily computes that proba{c under r at (N,z)} =
M (y)/M (z) is independent of permutations of o. Hence such a method satisfies
OLI. Since M (a) > 0 for all a it also clearly satisfies PS and the weaker condition
PFS. SM, is easier to prove from the alternate description of the bayesian
method, so we will first check that the two are equivalent.

If we view m = 7o as our prior distribution on the probabilities (p;);en of
the various colors occurring, then 7, is the posterior distribution after having
observed z; occurrences of color i. Thus whenever we have y; balls in the urn of
color i, we have the posterior distribution 7, regardless of what combination of
initial claims and balls added brought us to y. Thus at (N, z) the probability
that next ball added will be of color i is p;(N,x) = E,_ (p;) = M(x+e;)/M(x),
and the two descriptions agree. Let Fé’)(p) = proba{p; < punder 7.} be
the marginal distribution function of p; under the probability 7,. As far as
agent ¢ is concerned, he will receive a probability of getting each ball with some
probability p; chosen according to the distribution function Fg(f). Thus to show

SM_ it suffices to show that Féi)ei is stochastically greater than FY. Since
] i i 1 i i
2 pdF (p) < pFi (p) and [} pdF (p) = p(1 — FL”(p)) we have

_ JypdF (p) I pdFL (p)

Fyllep) = 5 @ [P0 T (0
Jo PdF"(p) [y pdFa"(p) + [, pdFz" (p)
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| pF (p) |
= pFY (p) +p(1 — EY (p))

and stochastic dominance follows.

For the converse, suppose we have an urn-filling method which meets M and
OLI. Suppose we start with initial claims of 0 and add balls successively. Let X;
be the color assigned to ball t. By OI, the sequence X; is exchangeable therefore
by de Finetti’s Theorem (Theorem 35.10 p. 473 of Billingsley [1995]), there is
a probability measure = on X (V) such that the colors X; are independently
chosen with probabilities (p;);cn, and the (p;)ien chosen randomly according

to m. To complete the proof that the urn-filling method is bayesian, we need
o

only show that 7(X(N)) > 0. This follows quickly from OI and PFS. Because
of Order Independence, positive share at some future time PFS is equivalent to
positive share immediately PS. Therefore there is positive probability that the
first | V| balls will be distributed one each to each of the agents, i.e.,

/ le dﬂ-(p) > 0;
Z(N)

i€EN

]

and hence 7(32(N)) > 0.

From this discussion we also get a complicated characterization of urn-filling
methods satisfying M and OI. For any initial set of claims x we can look at
the sequence X; of colors assigned to the successive balls. Again this sequence
is exchangeable and de Finetti’s theorem implies that there is a probability
measure 7, on %(N) such that the colors X; are independently chosen with
probabilities (p;)ien, where (p;);cn are chosen according to m,. If E, (p;) =
fE(N) p; dm(p) > 0, then there is positive probability that we will add a ball of
color 7 to obtain an urn containing x + e;. Hence we must have

. o fA pi dmy (p)
T+te; (A) - fE(N) Di d'ﬂ—z(p) .

However if fz( n)Pi dm,(p) = 0, then there is no direct relationship between m,
and 7y4e,. Such an urn-filling method could be referred to as quasi-bayesian,
since for any set of initial claims it behaves like a bayesian method, but different
initial claims may lead to unrelated bayesian methods.

APPENDIX 5: M+ CSY

One can give a very complicated description of all urn-filling methods sat-
isfying M and CSY. The main invariant of such method is an ordering =~ on
N x N. For a finite set of agents N and vector of claims z, let M(x) C N be the
set of agents 4 such that (7,z;) is maximal under - and let y be the projection
of x onto M(x). At (N,x) the only agents who have nonzero probability of
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receiving the next unit are those in M (x) and further p;(N,z) = p;(M(z),y)
depends only on y. For an equivalence class I C N x N of =, let M(I) be the set
of all agents represented by I and call |[M(I)| the type of I. Then the possible
equivalence classes are as follows:

(1) An equivalence class of type 1 is necessarily a singleton.

(2) An equivalence class of type 2 may be arbitrary and on this class the urn-
filling method can be any markovian method.

(3) An equivalence class of type at least 3 may be of one of four types.

(3i) Winner-takes-all. The equivalence class I consists of a single pair (i, x;)
for each i € M(I) and we have (,y;) > (i,z;) for all y; > x;. In this case
there is some set of positive weightsA; for i € M(I). If M C M(I) and z is the
M —vector with entries x;, then p;(M,x) = \;/Ap and the agent who receives
that first unit will receive all subsequent units.

(3ii) Equalizing. There is a finite integer s > 1 and the equivalence class T
consists of a union of disjoint chains with constant increment s, (i, a;), (i,a; +
$)y...(i,b;—s) and we have (i, a;) > (¢,b;) and (¢,y;) = (¢,a;) forall a; < y; < b;
which are not congruent to a; mod s. Note that there may be more than one
such chain for each agent i. Suppose x is a vector of claims supported on
M c M(I), (i,z;) € I for all 4, and (¢, a;),. .., (i,b; — s) is the chain containing
(,x;), then
b,’ — Xy
pi(M,x) = ——

(3iii) PE. There is an integer s > 1 and for each agent i € M(I) there is
a nonnegative integer a; such that the equivalence class I consists of all pairs
(i,a; + ks) for k > 0. Furthermore (i,y;) > (i,a;) for any y; > a; and not of the
form a; + ks. In this case there is a vector A of positive weights supported on
M(I) and if z is a vector of claims supported on M C M(I) such that (i,z;) € T
for all i € M, then

T, — a; + N\

i(M,z) = ————.
pi(M, x) PR—

(3iv) fixed chances. There is an integer s > 1 and for each agent i € M(I)
there is a nonnegative integer a; such that the equivalence class I consists of
all pairs (i,a; + ks) for k > 0. Furthermore (i,y;) > (¢,a;) for any y; > a;
and not of the form a; + ks. In this case there is a vector A of positive weights
supported on M(I) and if z is a vector of claims supported on M C M(I) such
that (i,2;) € I for all ¢ € M, then

Ai
. = .
pi(M, ) \

Note that in cases (3ii), (3iii), and (3iv), if an agent receives one ball, then
he will receive the next s — 1 balls as well.

One can also give a complete characterization of all urn-filling methods which
satisfy the Markovian Property, Consistency and Order Independence. From
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the remarks in Appendix 4, it is easy to check that Order Independence implies
Share Monotonicity . In the opposite direction, a method which satisfies M,
CSY and SM, is a combination of winner-takes-all, Polya-Eggenberger, fixed
chances and methods involving 2 agents (Appendix 2). However winner-takes-
all, Polya-Eggenberger, and fixed chances methods all satisfy Order Indepen-
dence. After a little analysis of the 2 agent case, one sees that a method sat-
isfying M, CSY and Ol is exactly a method satisfying M+CSY+SM with the
added restriction that on each equivalence class of type 2 the urn-filling method
must be bayesian.

APPENDIX 6: M +CSY +IT

Consider the generalization of the PE methods (7) or the fixed chances meth-
ods (8) where some of the weights \; can be zero: the distribution p(N,z) is
well-defined whenever N intersects the support of A + x or of A (for the cases
of PE and fixed chances methods respectively). When it does not, we can use
a different set of non-negative fixed chances to distribute the next unit. This
leads to the following concept of nested fixed weights.

Definition 5 Given an ordering = of N (complete, transitive) and a set of
positive weights y; for each i € N, we define the nested set of weights (=)
associating to every finite subset N of N the following set of convex weights:

ng’“)(N) = ,u:- if i€ N* =argmax (77, N)
KN
= 0 ifi¢N"

Note that the next set of weights is unchanged if we multiply all numbers p;
in an indifference class of - by a positive factor.

Definition 6 Given a nested set of weights (<" we define three markovian
urn-filling methods:
i) m— fized chances : for all N, z,i

pi(N,z) = 7;(N)
ii) ™ — proportional : for all N, x,i
pi(N,w) = == if oy > 05 pi(N,0) = m(N)
N
i11) m— Polya-Eqggenberger: for all N,x,1

(V) =
p( ) AN + 2N

if tn > 0; pi(N,0) = mi(N)

where \ is the truncation of p to N* = argmax(’Z, N) :

Aj = p; if j € N and \j = 0 otherwise
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Notice that the m7—P.E. method is defined only if there are some largest
agents for =~ in N, which is always true when A is finite. The fixed chances
and P.E. methods ((8),(7)) correspond to the case where all agents of A/ are
indifferent for - .

We claim that all methods in Definition 6 meet IT and CSY. The claim
is obvious for IT. We check that a m — P.E. or a m—proportional method r is
consistent.

Fix an urn (N, x), two agents 7, j and check equation (2). If zx~ ; > 0, both
filling processes r(N,z) and r(N\Jj,z) are a P.E. method with non-negative
coefficient A, (they are all zero for the proportional method): the proof that a
P.E. method is consistent in Appendix 1 extends to the case of non-negative A.

If zxn; = 0 and x; > 0, all balls in r(N,z) go to agent j under the
m—proportional method, hence (2) is trivially true. For a m—P.E. method,
distinguish two cases: if (N\j) NN* = (), again all balls in 7(N, z) go to agent
g, if (NN\J) NN* # 0, then 7(N,x) and r(N\Jj,z) are the P.E. methods with
non-negative coefficients Ay (for instance r(N\ 4, 0) gives the first ball to k with
proba. A, /AN~ j, and so on).

If zxy = 0, then r(N,0) and r(N\J,0) only ever give balls to N* and
(NNJ)*. If j ¢ N* he is left out of the distribution and (2) is trivial. If j € N*,
then the m—proportional process r(N,0) gives all the balls to one agent in N*
selected according to the distribution 7(N*) and (2) follows easily. The 7—P.E.
method 7(N,0) does the same if N* N N* = (), otherwise it is the P.E. method
with (positive) coefficients A on N*, and (2) follows.

We need one more definition before stating the characterization result. Sup-
pose N is partitioned as N, UN_, and 7 _,7_ are two filling methods defined
respectively on N, and N_. The priority composition of r, and r_ (with N,
having the higher priority) is the method filling an urn (V, z) like r_ whenever
N C N_, and like r, whenever N NN, # () —in the latter case, the agents in
NN\, receive nothing-.

The priority composition respects M and CSY, that is, the composed method
meets M, or CSY if both r, and r_ do. Priority composition does not respect
IT, except when r__ is a fixed chances method.

A filling method r meets M, CSY and IT if and only it is the priority com-
position of a 7, —fixed chances method (N, ,7, ) and a method (N_,r_) that is
a m_—proportional or a w_—P.E. method, or a 2-person method. Note that we
allow NV, or N_ to be empty.

We omit the proof for the sake of brevity.

Note that all above methods are OI (resp. SM, ) provided OI (resp. SM, )
holds for the low priority 2-person method (if any). In this sense OI and SM
”almost” follow from the combination M, CSY and IT.
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