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Abstract

A server processes one job per unit of time and randomly sched-
ules the jobs requested by a given set of users; each user may request
a different number of jobs.

Fair queuing (Shenker [1989]) schedules jobs in successive round-
robin fashion, where each agents receives one unit in each round until
his demand is met and the ordering is random in each round. Fair
queuing*, the reverse scheduling of fair queuing, serves first (with
uniform probability) one of the users with the largest remaining
demand.

We characterize Fair Queuing* by the combination of Lower Com-
position —LC— (the scheduling sequence is history-independent), De-
mand Monotonicity -DM- (increasing my demand cannot result in
increased delay) and two equity axioms, Equal Treatment Ex Ante —
ETEA — (two identical demands give the same probability distribu-
tion of service) and Equal Treatment Ex Post -ETEP— (two identical
demands must be served in alternating fashion). The set of dual ax-
ioms, (in which ETEA and ETEP are unchanged) characterizes Fair
Queuing.

We also characterize the rich family of methods satisfying LC,
DM and the familiar Consistency -CSY— axiom. They work by
fixing a standard of comparison (preordering) between a demand
of z; units by agent i and one of z; units by agent j. The first job
scheduled is drawn from of the agents whose demand has the highest
standard.
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Fair Queuing and other Probabilistic
Allocation Methods

1 Scheduling/Rationing indivisible units

Scheduling a list of homogeneous indivisible tasks is always unfair ex post, but
ex ante fairness can be achieved by lotteries, i.e., by choosing the schedule at
random.

A server faces demands of various sizes from various users. Assume that user
7's demand is of size x;, and that our server performs one task per unit of time;
in other words it can meet one unit of demand from any agent per unit of time.
For instance, messages sent on the internet are broken into a series of elementary
packets, and a switch processes packets sequentially (see Demers et al. [1990]).
The scheduling problem is to choose the order in which the elementary tasks
will be performed; here again randomization allows ex ante fairness.

In our simple model, the list of demands x;, one per agent, is deterministic
and fixed once and for all: we do not allow for the random arrival of new demands
at successive dates. For instance the model cannot describe the familiar FIFO
method.

Two simple scheduling methods are discussed in the queuing literature. The
proportional method amounts to treat equally each unit of claim: for each agent
i we throw x; balls labeled 4 in an urn, and draw the balls successively (without
replacement and with uniform probability among the remaining balls). Equiv-
alently, the ¢t — th unit goes to agent ¢ with a probability proportional to his
remaining (unsatisfied) demand.

The proportional method is a simple and natural interpretation of fairness
in our problem. Yet it has been criticized in the scheduling problem because
it fails to protect an agent with a small demand. This is because an agent’s
expected waiting time goes to infinity if other agents’ demands do the same.
The fair queuing method! solves this problem by allocating one unit per agent,
irrespective of the size of individual demands, in successive round-robin fash-
ion. In each round the active agents (whose demands is not yet fully met) are
randomly ordered (with uniform probability) and served one unit (one job) in
that order. Fair queuing also stands out for its superior incentives properties:
inflating one’s demand artificially to increase one’s chance of early service does
not pay — as it would under the proportional method —.

An equivalent interpretation of our model is the problem of rationing an
overdemanded commodity, the object of a substantial amount of axiomatic anal-
ysis in the microeconomic literature on distributive justice?.

1 Originally proposed by Shenker [1989] in the context of networks; see Demers et al. [1990]
for references to that literature.
2References on that literature are given in the next section.



In the rationing interpretation, agent ¢ demands x; units of the commodity,
and the available resources t fall short of total demand. A probabilistic rationing
method allocates the resources possibly with the help of a lottery, making sure
that no agent receives more than his demand.

Admission to colleges, the award of immigration visas, the allocation of
workers between the divisions of a firm are all instances of rationing where the
overdemanded resources come in indivisible units. Lotteries are the simplest and
oldest mechanism to restore (ex ante) fairness despite the indivisible character
of the resources.®

When ¢ increases from ¢ = 1 to t = Y, x;, a plausible requirement is that the
(random) share of a given agent never decreases. Granting this property?, the
rationing of the profile of demands z; is described by a (random) sequence of
agents {i1,4s...} where each agent ¢ appears exactly z; times (thus the length
of the sequence is Y x;) : 41 is the agent receiving the unit if ¢t = 1, agent iy
receives the second unit and so on. If the demand x; represents the number
of “jobs” requested by agent 4, such a sequence is precisely a schedule of these
jobs.

Keeping in mind both interpretations of the formal model, rationing and
scheduling, is helpful throughout the paper to interpret the normative require-
ments (axioms) as well as the results.

A very general equity requirement is Equal Treatment of Equals: z; = 2; =
Yi = Yj, namely unequal shares can only be justified by unequal demands.
If ETE fails, the allocation method embeds exogeneous differences (unequal
rights) among agents®. In real life the equity requirement is often compelling
(as in “one man, one vote”) but inequitable allocation methods are important as
well: differences in priority status between various users of the internet and other
networks is an important policy tool to control congestion. From the standpoint
of axiomatic analysis, we want accordingly to study equitable rationing methods
as well as inequitable ones.

In our probabilistic rationing model, agent i's demand x; and the resources
t are (deterministic) non negative integers; the share Y; assigned to agent i by
a rationing method is an integer valued random variable such that 0 <Y; < x;
and ) . Y; = t. The “equal treatment of equals” principle takes two inter-
estingly different forms. In the ex ante form (ETEA for short), we require
x; = T; = Y; ~ Y; in the sense that these two variables have identical probabil-
ity distributions. Both rationing methods, proportional and fair queuing meet
ETEA.

In the ex post form (ETEP) we require z; = x; = |Y; —Y;| < 1 namely
the realization of the two main variables can differ by one at most. This is the

3See Hofstee [1990] for a college admission example, and Elster [1992] chapter 2, Young
[1994] chapter 2 for more examples, including demobilization and organ transplants.

4The precise link between probabilistic rationing and scheduling is discussed in Section 5:
see in particular Remark 3.

5Stronger equity requirements include Ranking: x; < z; = y; < y;, and Anonymity,
expressing that the mapping * — y is symmetric. In our model, these strong equity properties
are a consequence of ETE, in combination with the other axioms.



smallest feasible difference in (ex post) shares. For instance, if 2; = z; for all ¢, j
and ¢ is a multiple of n, the number of agents, ETEP forces deterministic equal
shares. Fair queuing meets ETEP, but proportional does not: for instance, if
t < x; for all 7, this method gives everything to a single agent with positive
probability.

Our results rely on three powerful invariance axioms familiar in the rationing
literature. Consistency (CSY) says that the allocation of ¢ units among agents
{1,2,...,n} can be made in two stages: first we serve (a random share to)
agent 1, then we share the remaining units between agents {2,...,n}. In the
scheduling interpretation, CSY simply says that dropping an agent does not
alter the scheduling of the remaining agents.

The second axiom is Lower Composition (LC), stating that the ¢ units can
be handed out one at a time, provided each time we decrease by one the demand
of the recipient. Equivalently LC says that the scheduling process is “history-
independent”: at any point in time, the size of the remaining demands is all that
matters to the scheduling of the remaining jobs — the particular realization of
the earlier sequence of jobs is irrelevant —. The third axiom, Upper Composition
(UQ), is the dual of LC: it says that the ¢t* units of deficit (t* =, z; —t) can
be handed down one at a time, provided we decrease accordingly the demand
of the recipient. Equivalently, the scheduling process is “future-blind”: for any
given t, the total accumulation of jobs up to time ¢ (i.e., how many jobs are
assigned to each agent 7 at t) is all we need to compute the random scheduling
of the first ¢ jobs.

Our first main result, Theorem 1, shows that the three axioms Lower and
Upper Composition, and Equal Treatment Ex Post, drive a wedge between the
three basic methods. The proportional one meets LC and UC but fails ETEP
(see above). Fair Queuing meets ETEP and UC but fails LC. The successive
rounds allocating one unit per agent still active, are not history-independent:
one must keep track of who has been served so far in the current round. Thus
LC fails. On the other hand UC holds because fair queuing allocates successive
units of deficit uniformly among the agents with the largest remaining demand.
The dual Fair Queuing® method meets ETEP and LC but not UC.

Theorem 1 offers compact characterizations of our three methods in which
equity is assumed but Consistency plays no role (although this property is sat-
isfied by all three). The other two main results, Theorem 2 and Theorem 3,
drop the requirement of equity and essentially characterize the rich families of
methods satisfying any two out of the three properties CSY, LC and UC.

In order to describe these rich and somewhat complex families, we need
one more axiomatic ingredient, namely the two mild properties called Demand
Monotonicity (DM) and its dual Demand Monotonicity* (DM*). DM says that
an increase in agent i's demand x;, leaving ¢ and the other demands unchanged,
cannot deteriorate agent i’s (random) share, in the sense of stochastic domi-
nance. The dual axiom DM* requires that agent i’s (random) share of deficit
does not diminish as his demand increases while the deficit t* and the other
demands are unchanged.

Theorem 2 characterizes the set of methods meeting CSY, LC and DM; or,



dually, the methods meeting CSY, UC and DM*. In order to describe this
rich family, it is convenient to start with the simple subset of its deterministic
methods, i.e., those methods that do not use any lottery. In this case the key
concept is that of standard of gains®, namely an ordering of all pairs (i, z;) made
of one agent and one positive claim. The relation (i, x;) > (j, ;) reads “a claim
of x; by agent 7 has precedence over a claim of z; by agent j7. A standard of
gain is a linear ordering (no indifferences) of the pairs (i, x;) that is increasing
in claims: (4,x;) < (4,2; +1). The rationing method associated with a standard
of gains allocates the first unit to the agent 7 such that (i, z;) is highest for the
standard, and reduces agent ¢’s claim to x; — 1; the second unit goes similarly to
agent j (possibly the same) such that (j,z;) is highest — given agent i's reduced
claim — and reduces that agent’s claim by one; and so on.

Proposition 1 says that in the deterministic case, the trio CSY, LC and DM
characterizes the family of standard of gains methods. The dual Proposition 1*
says that CSY, UC and DM* characterizes the set of standard of losses methods,
where the above algorithm is used to allocate the successive units of deficit.

When lotteries are allowed, a standard of gains (or losses) allows indiffer-
ences, hence it is simply a preordering (transitive, complete) over all pairs (i, x;),
non decreasing in x;. Now a typical rationing method associated with a stan-
dard of gains works as follows. Given the profile of claims x;, we identify all
pairs (i, ;) maximizing the standard. If there is only one pair (i, z;), agent i
gets the first unit and his claim drops by one; if the pairs with highest stan-
dard are, say, (1,21),(2,22) and (3, z3),we seek the lowest claims x, x5 and x4
such that (1,29),(2,25) and (3,2%) are still in the same indifference class say
(1,2%),(2,245) and (3,2%). Then we use the proportional method to allocate the
first t = 3+ 21— @) + 22 — xh + x3 — x% units among agents 1,2, 3 with initial
claims (x1— 2} + 1,22 — 24 + 1,23 — x4 + 1). After ¢ units have been handed
out in this way, the remaining claims are } — 1,25 — 1,24 — 1, and we repeat
the algorithm to allocate the next units.

If the standard of gains makes all pairs (i, z;) indifferent, the proportional
method obtains. The standard of gains (i,z;) = (j,z;) iff z; > z; yields the
fair queuing® method, where the first unit goes with equal probability to one of
the agents with the largest demand.

Theorem 2 characterizes the family of standard of gains methods’ by the
combination of the axioms CSY, LC and DM. Dually, the trio CSY, UC and
DM* characterizes the set of standard of losses methods, where the above al-
gorithm is used to distribute the successive units of deficit. For instance fair
queuing corresponds to the standard of losses (i, x;) = (j,z;) iff x; > z;.

Our last result, Theorem 3, bears on the family of rationing methods meeting
Lower and Upper Composition. This set contains only one equitable method,
namely proportional (Theorem 1 in Moulin [1999a]). Even under the additional
requirements DM and DM*, the family in question is quite complicated and
does not appear to have a simple representation, except in the deterministic

6Originally introduced by Young [1994]; see also Kaminski [2000].
"The precise definition of these methods is only a little bit more involved than the above
discussion suggests: see Section 7.



case: Proposition 3. However, if we restrict attention to those methods in which
every agent with a positive demand receives more than nothing (at least one
unit with a positive probability)®, the family defined by LC+UC has an elegant
representation. Every such method is entirely determined by a set of n(n—1)/2
numerical weights (n is the number of agents), via a familiar combinatorial
formula.

2 Related literature

In the classical rationing problem?, demands and shares are both deterministic
and divisible. Agent 's demand x; of the divisible commodity is a real number
and so is t, the amount available for distribution. A rationing method assigns
a real number y; to agent ¢, his share, where 0 < y; < z; and ), y; = t.

The three methods called Proportional, Uniform Gains (or Constrained
Equal Award), and Uniform Losses (or Constrained Equal losses) stand out in
the axiomatic discussion. The proportional shares are y; = Zmi The uniform

S XTj

gains shares are y; = min{x;, A}, where X is the solution of ij min{z;, A\} =¢.
The uniform losses shares are y; = max{x; — u, 0}, where p solves 3, max{z; —
w0} =t.

In our model with indivisible units and probabilistic shares, the expected
shares generated by the Proportional method are clearly y; = EY; = t.z‘jiwj.
Tt is just as easy to check that the expected shares of Fair Queuing (resp. Fair
Queuing*) are precisely the uniform gains (resp. uniform losses) shares. Fur-
thermore, our three invariance axioms —CSY, LC and UC — mimick the axioms
with the same name in the classical model.

Due to the discrete nature of the model, our results are sharper and sim-
pler than in the classical model. For instance our compact characterization of
Fair Queuing and Fair Queuing* (statements b and ¢ in Theorem 1) has no
counterpart in the classical model.

An important result due to H. P. Young illustrates clearly the differences
between the two models. Theorem 1 in Young [1988] characterizes a family
of “equal sacrifice” methods by the combination of CSY, UC, a very strong
equity axiom (Strict Ranking: z; < ; = y; < y;) and a monotonicity axiom
(Strict Resource Monotonicity: ¢ < ¢’ = x; < z4). The latter axiom has no
counterpart in our model with indivisible goods. Nor are the equal sacrifice
methods discussed by Young related in any clear way to the standard of losses
methods characterized in our Theorem 2 by the combination of CSY, UC and
DM*. For instance, Uniform Losses (the analog of Fair Queuing*) is ruled out
by Strict Ranking — and by Strict Resource Monotonicity as well.

Closer to home, Moulin [2000] characterizes the impact of the trio CSY +
LC + UC, both in the classical model and in the model with indivisible goods

8The proportional is one such method, fair queuing is not.
9The literature starts with Banker [1981], O’Neill [1982] and Aumann Maschler [1985].
Two surveys are Thomson [1995] and Moulin [1999c¢].



and deterministic shares. In the latter, this trio is met only by the priority
methods (see Remark 1 in Section 4). In the former, the set of such methods
is large, richer than in the current probabilistic model: for instance there are
exactly three equitable methods meeting CSY, LC, UC, and Scale Invariance, a
natural homogeneity property with no counterpart in our discrete model. These
three methods are precisely the proportional, Uniform Gains and Uniform Losses
methods (Corollary of Theorem 2 in Moulin [2000]), a result easily compared to
our Theorem 1.

The current rationing model with indivisible units and probabilistic shares
is introduced in Moulin [1999a]. That paper provides a characterization of the
Proportional method reproduced below as statement a in Theorem 1 as well
as a characterization of the family of methods meeting CSY, LC and UC. This
result is described in the concluding Section 10.

Sasaki [1996] introduces a model closely related to ours, where homogeneous
indivisible units are allocated randomly. In Sasaki’s model agents have single-
peaked preferences over their share, and the sum of individual peaks x; can be
larger or smaller than the available resources ¢ (the commodity can be overde-
manded or oversupplied). He characterizes the (analog of the ) Fair Queuing
method by the combination of equity, efficiency, and incentive compatibility
(strategyproofness): neither of the latter concepts applies to our preference-free
context.

Organization of the paper

Section 3 defines the deterministic model. Section 4 introduces the deter-
ministic standard of gains/losses methods and states the deterministic version
of Theorem 2: Propositions 1 and 1*. The probabilistic rationing and schedul-
ing models are introduced in Section 5. The proportional, fair queuing and
fair queuing® methods are characterized in Section 6: Theorem 1. Section 7
describes the probabilistic standard of gains/losses methods; they are charac-
terized in Section 8: Theorem 2. The final Section 9 discusses the methods
meeting LC and UC: Theorem 3. All proofs are gathered in the Appendix.

3 Deterministic model

The finite set of agents N is fixed throughout the paper. We denote by N the
set of integers, N = {0,1,2,...}. Agent ©’s demand x; and the resources t are in
N. The i-th unit vector of NV is denoted e;. The dimension of a vector x in N¥
is the number of its non zero coordinates. We denote by = a profile of demands,
z € NV, and write xy = >, x; A rationing problem is a pair (¢,z), such that
t < xy. A rationing method r associates to every problem (¢,z) a vector of
shares y = 7(t,z) in NV and such that 0 < y; < x; for all i and yny = t.

The dual r* of a method r allocates the ¢ units of resource in the same way
as 7 allocates )y — t units of deficit



r*(t,x) =x —r(zny — t,2) (1)

All methods discussed below are resource monotonic, namely t < t' =
r(t,x) < r(t',x). For instance, this property follows from either one of Lower or
Upper Composition defined below.

In the scheduling interpretation, a resource monotonic rationing method
associates to every demand profile & a sequence of length xy in N, denoted
r(z) = {4192, ...,z }, such that each agent ¢ appears exactly x; times. The i,
unit vector e;, is the increment r (¢, z)—r(t—1, z). We shall use both formulations
of a method r — rationing and scheduling — indifferently. For instance in the
scheduling format, the dual sequence r*(zx) is simply the reverse sequence j; =
Z'xN—t-&-l-

The next two properties respectively state that an agent’s share does not de-
crease when his demand rises, ceteris paribus (axiom DM), and that his share of
deficit does not decrease when his demand rises and we keep the deficit constant
(axiom DM*).

Demand Monotonicity (DM): r;(t,z) < r;(¢t,x + ¢;)

Demand Monotonicity*(DM*): r;(t + 1,2 + ¢;) < r;(t,x) + 1

As suggested by our notation, DM* is the dual of DM: a method r meets
DM* if and only if r*meets DM.

In the deterministic model, we introduce a single equity axiom initially pro-
posed by Balinski and Young [1982] in the related apportionment problem:

Equal Treatment Ex Post (ETEP): z; = z; = |ri(t,z) —r;(t,z)| <1

In the scheduling context, ETEP requires that two agents with equal de-
mands are served alternately.

The next three axioms are the backbone of our analysis. We use the notation
(az K y,) for the following vector z in NV : z; = y;, z; = x; for j # .

Consistency (CSY)!? r;(t,z) = r;(t — rj(t,x), (z | 0)) for all i # j.

The rationing interpretation of CSY is well-known: instead of sharing ¢
among all agents in N, we may give her share to agent 7, then cancel j's demand
and divide the remaining (¢ — y;) units among N \ j.

In the scheduling format, CSY takes a very simple form: the sequence 7((z |/
0)) obtains from r(x) by deleting agent j's occurrences. By repeated application,
we get the following equivalent formulation of the CSY property: for any pair
(,7), the (i,j) subsequence of r(x) (obtained from r(x) by deleting all agents
other than i, j) is independent of xy for all k # 14, j.

Lower Composition (LC): r(t,z) = r(1,z) +rt — 1,z —r(1,2))

10The standard formulation of CSY uses a model with variable population N and relates the
choices in N— problems and in N\ i— problems (see e.g., Thomson [1995], Moulin [1999¢]). In
our model an agent ¢ with null demand receives y; = 0, hence a problem (N, ¢, z) where z; = 0
can be identified with the problem (N \4,¢,z_;). Thus our formulation of CSY coincides with
the standard one.



By repeated applications of LC, we obtain the following equivalent property.
The allocation of ¢ units at the demand profile x can be decomposed in two
steps: first allocate ¢’ units, where ¢’ < t, yielding the shares 3/, next allocate
the remaining ¢ — ¢’ units at the demand profile z — 3/.

In the scheduling interpretation, LC says that the sequence r(z) is “history
independent”: for any ¢, the subsequence starting at ¢ only depends upon the
number of jobs for each agent unserved at that time; it does not depend on the
particular scheduling of jobs up to t — 1.

Upper Composition (UC) r(t,x) = r(t,r(xy — 1,x)),where t < xy

The allocation of ¢ units at profile z can be made in two steps: first allocate
t'units, where ¢t < t/, yielding the shares 3/, next allocate ¢ units at profile y'.
In the scheduling format, UC states that the sequence r(z) is “future-blind”:
for any t the subsequence up to time t only depends upon the total number of
jobs awarded to each agent up to that time; it is independent of the subsequent
scheduling.

The axioms Upper and Lower Composition are dual of each other. Consis-
tency, on the other hand, is a self-dual property.

We conclude this section with two useful reformulations of LC and UC re-
spectively. The obvious proof of Lemma 1 is omitted.

Lemma 1 Fiz an arbitrary mapping v from NV \ {0} into N and such that
v(x) =i = x; > 0. There is a unique rationing method satisfying LC and such
that

r(l,z) =e; = y(z) =1 (2)

There is a unique rationing method satisfying UC and such that

rleay —L,z) =z —e; = vy(x) =1 (3)
These two methods are dual of each other.

Thus a method meeting LC (resp. UC) is entirely described by the way it
allocates the first unit of resources (resp. the first unit of deficit).

4 Standard of gains, standard of losses

Definition 1 A (deterministic) standard of gains (in short s.g.) is a linear
ordering'' = of N x (N\ {0}) such that : (i,x;) < (i,x; + 1) for all i, all
x; = 1,2... The corresponding rationing method satisfies Lower Composition
and is defined (via (2)) as follows:

11

complete, transitive, antisymmetric

10



y(z) =1 p=4 (i,2;) = (J,z;) for all j #1 (4)

The standard > determines which agent has the strongest claim to the first
unit of the commodity by ranking a demand x; by agent ¢ versus a demand
x; by agent j. After decreasing the demand of the winner of the first unit, the
standard determines the strongest claim to the second unit and so on.

Proposition 1 A rationing method r is a standard of gains method (Defini-
tion 1) if and only if it meets Consistency, Lower Composition and Demand
Monotonicity.

All proofs are in the Appendix.

Standard of gains methods equitable in the sense of Equal Treatment Ex
Post are easy to describe. The standard > must give precedence to a larger
demand: (i,241) = (j, 2) for all ¢, j and z. Indeed assume (j, z) > (i, 2+ 1) and
consider a demand x; = x; = z + 1, x;, = 0 otherwise. Then the first two units
must go to agent j, a contradiction of ETEP. Conversely, any standard > for
which a larger demand ensures a stronger claim, yields an equitable rationing
method.

An equitable s.g. may order the pairs (i, 2),7 € N, arbitrarily, and this order,
denoted o,, may depend upon the level z = 1,2, ...

Here is an example with N={1,2,3.4}: for z odd we posit (1,2) > (2,2) =
(3,2) > (4, 2) and for z even (2,2) > (4,2) > (1, 2) = (3, 2). For instance at the
profile of demands xz = (3,2,2,5), the scheduling sequence is

r(r) =(4,4,1,4,2,4,1,3,1,2,3,4,)
T N—— N —

o3 g2 o1

Reading this sequence backward (allocating successive units of deficits) amounts
to enumerate the pairs (i,2z) increasingly along the standard >, dropping an
agent once he has appeared z; times: here agents 2,3 drop in the third round
(7,3) and agent 1 drops in the next one.

The example suggests an interesting interpretation of many s.g. methods
equitable or not. Suppose that the standard > can be represented as an infinite
sequence like:

&z(il,zl),(ig,zQ),...,(ik,zk),... ]4321,2,...

where (ig+1, 25+1) = (ik,2;) and all pairs (,z) in N x N\ {O}are listed. For
instance (i1, 1) is the smallest pair of all and z; = 1. Note that not all standards
can be so represented. An example is a fixed priority like 1 > 2 > ... > n, for
which the standard is lexicographic; (¢,2;) > (j,z;) iff ¢ < j or i = j and
Ti > Tj.

11



Because the standard = over the pairs (i, z) is increasing in z, the sequence
a is entirely determined by its projection o on N, namely the fized path:

a = (il,ig, ...’ik, )

where each agent ¢ appears infinitely many times.

To such a fixed path, we associate a scheduling method r as follows. For all
x, r(x) read backwards follows «, skipping agent 7 once he has appeared z; times.
That is, the rationing method r distributes the successive units of deficit in the
fixed order given by «, skipping agent ¢ after he appears x; times. Clearly, r is
the standard of gains method with the following standard >:

(t,25) > (J, z5) g=4 {J appears z; times in a before ¢ appears x; times}

In the above example with 4 agents, our equitable standard of gains method is
associated with the fixed path:

o=(4,3,2,1,3,1,4,2,4,3,2,1,3,1,4,2,...)
LR W R

An ordering > of N xN\{0}, increasing in z, can be enumerated as an increasing
sequence & if and only if it is a well order, namely for every pair (i, z) the set
of (4,2") below (i, z) is finite. Because > increases in z, this is equivalent to the
following assumption:

for all 4, 4,7 # j and all z;, there exists x; such that (j,z;) = (i,z;)  (5)

The following statement summarizes the above discussion.

Lemma 2 Given an arbitrary fixed path o (a sequence in N where each agent
appears infinitely many times), the method r distributing successive units of
deficit along o is a standard of gains method satisfying the following archimedian
property:
for alli,j,i # j and all z;, there exists x; such that r(1,x;e; + xje;) = e;
Conversely, any standard of gains method with the archimedian property is
a fizxed path method.

The archimedian property is a mild equity property, much weaker than
ETEP'?: any given demand of i can be “outweighed” by a large enough de-
mand of j.

In the duality operation, standard of gains methods are turned into standard
of losses methods. A (deterministic) standard of losses (s.l.) is the same mathe-
matical object as a standard of gains, namely a linear ordering > of N x (N\{0})

120ne checks easily that ETEP plus LC imply the archimedian property.

12



increasing in the second coordinate. The corresponding rationing method meets
Upper Composition and is defined by (3) and the mapping ~ defined in (4). Nat-
urally, this method is the dual of the s.g. method of Definition 1. Therefore the
next two results are mechanically adapted from Proposition 1 and Lemma 2.

Proposition 1* A rationing method is a standard of losses method if and
only if it meets Consistency, Upper Composition and Demand Monotonicity*.

Lemma 2* Given an arbitrary fized path o ( a sequence in N with infinitely
many occurrences of each agent i), the method r distributing successive units
of the commodity along « is a standard of losses method with the following
archimedian property:

for all i,j,i# j, all z;, there exists x; such that v*(1,z,e; + z;e;) = e;.

Conversely, any standard of losses method with the above archimedian prop-
erty is a fived path method.'

The s.l. methods equitable in the sense of Equal Treatment Ex Post dis-
tribute successive units along a fixed path « consisting of successive orderings
of N (i.e., each agent appears k times in the first nk terms of the sequence).
Each such method is a deterministic version of fair queuing.

Remark 1 Asdescribed above a fixed priority method relies on a given ordering
o of N, where o(1) = i is the agent with the highest priority and so on. Then
the scheduling sequence is as follows:

1 2 Tn

This method is both a s.g. and a s.l. method. There are no other methods
at the intersection of these two families. This can be checked directly from
the definitions. It also follows from Theorem 1 in Moulin [2000] characterizing
the set of fixed priority methods by the combination of CSY, LC and UC. In
particular, a s.g. (resp. s.l.) method satisfies UC (resp. LC) if and only if it is
a fixed priority method.

Remark 2 Proposition 1 (and Proposition 1*) are tight results.

Drop Demand Monotonicity and the following “ultraprogressive” methods
(among many others) emerge. Fix an ordering of N, say 1 > 2 > .... > n. For
any profile of demands x, let o, be the ordering where a lower demand means
a higher priority, ties being broken in favor of the smaller index agent: e.g.
x = (3,2,5,2) yields o, : 2 >4 > 1 > 3. Our method allocates x according to
the priority o,. It fails DM because raising my demand may lower my priority
status. One checks easily CSY and LC.

13Fixed path methods emerge also in the (different) model of fair division with singlepeaked
preferences. They are characterized there by incentive compatibility and consistency: see
Barbera, Jackson and Neme [1997] and Moulin [1999b].
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Any standard of gains (resp. losses) method meets DM as well as DM*, al-
though the latter property is not needed for the characterization result. There-
fore if we drop the LC requirement, any s.l. method meets the other two re-
quirements of Proposition 1.

Finally we drop CSY and we check that the pair of axioms L.C + DM contains
(much) more than the s.g. methods, except in the case |N| = 2 (where CSY is
vacuous). For any partition of N as N = UNy, with k = 1, ..., K, we can define
the composition of K + 1 methods rg,71,...rg. Given a problem (¢, x), we use
first ro to divide the ¢ units among the K subgroups Nj, taking xy, to be Ni’s
demand; then we use 7 to allocate Ni’s share between the agents in Nj. The
composition respects the properties LC and DM (as well as UC and DM*) but
not CSY. For instance if r is a two person equitable s.g. method (associated,
say, with the fixed path 1,2,1,2,1,...) and if N = {1,2,3,4} is partitioned as
{1,2}, {3, 4}, the composition of r,r,r, fails Consistency.

5 The probabilistic model

A probabilistic rationing method r associates to every deterministic rationing
problem (¢, ) a random vector of shares Y = r(t, x), such that 0 <Y; < x; for
all 4 and Yy = t. As this will cause no confusion, we often identify the random
variable Y and its probability distribution on NV,

If a given vector a in NV is an upperbound on all demand profiles (so that
0 < x; < a; for all 7), we speak of a rationing method r* restricted to [0, a.
This notation is useful below in the description of probabilistic standard of
gains methods. The duality operation is defined and interpreted exactly as in
the deterministic model: property (1).

We postpone until after Lemma 3 below the discussion of the scheduling
interpretation for probabilistic rationing methods. See in particular Remark 3.

In the probabilistic model, we have two different and logically unrelated
equity axioms. Equal Treatment Ex Post is the same as in the deterministic
model: if z; = z; then |y; —y;| < 1 for every realization y of the random
variable Y. The new axiom is:

Equal Treatment Ex Ante (ETEA): z; =2; = Y; ~ Y.

(these two random variables have identical probability distributions.)

The proportional method below is an example of a method meeting ETEA
but not ETEP. A deterministic method fails ETEA but can meet ETEP.

The five axioms driving the characterization results in the deterministic
model extend straightforwardly to the probabilistic one. Their duality rela-
tions are preserved. Denote by < the stochastic dominance relation between
two random variables Z, Z' on N:

z<7z ngrob{Z >z} < prob{Z' > z} for all z € N

Demand Monotonicity (DM): Y; = r;(¢,z) <Y/ = r;(t,z + ¢;)
Demand Monotonicity*(DM*): Y/ =r;(t+ 1,z +¢;) <Y, +1=r;(t,x) +1
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Consistency says that sharing ¢ units given the demands x can be done in
one shot or can be decomposed in two stages: first compute agent j's share (a
realization y; of the random variable Y; = r;(¢, x)), next divide randomly ¢ — y;
units among N\j given the demands (x |7 0). The important point is that both
random draws are stochastically independent:

Consistency (CSY)': r_;(t,x) = r2;(t — rj(t,2), (x [ 0)) for all j.

where r_;(t, ) is the protection of 7(¢,z) on N\j and the superscripts r!
and 72 remind us that these two random variables are stochastically indepen-
dent. An alternative formulation of CSY uses the probability distribution of
the random variable r(¢,z). If r(¢,z)(y) is the probability that the realization
of r(t,z) is y, the CSY axiom takes the form:

r(t2)(y) = r(t2)(Y; = y;)r(t =y, (@ 0)((y |7 0)) for all t,z,y, j.

Lower Composition (LC): r(t,2) = r'(1,2) + r72(t — 1,2 — r1(1,2)).
Upper Composition (UC): r(t,x) = r2(t,r(xx — 1,2)).

Here again, r' and 72 denote two stochastically independent random vari-

ables. In the more explicit formulation with probability distributions:

LC :r(t,z)(y) = Zr(l,x)(ei).r(t —l,x—e)(y—e;) forallt > 1,2,y

i

(sum over those i s.t. z; > 0)

UC :r(t,x)(y) = ZT(J}N —1L,z)(x —e)r(t,x —e;)(y) forall t < xn,x,y

7

(we set r(t,x —e;)(y) =0 if y; = ;).

As in the deterministic case, the LC (resp. UC) axiom means that a method
is entirely determined by the way it allocates the first unit of the commodity
(resp. the first unit of deficit).

Lemma 3 Fiz an arbitrary mapping p, associating to every mon zero profile
of demands x a probability distribution p(x) over its support, and such that:
pi(x) >0=2; >0.

There is a unique probabilistic rationing method satisfying LC (resp. UC)
and such that:

141n the deterministic model — but not the probabilistic one — the equality of r_; and rgj

is equivalent to that of r; and r?, for all 4 # j. Hence the definition of CSY in Section 3 is the
same.
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r(1,z)(e;) = pi(x) (resp.r(zny —1,2)(x — e;) = pi(z))
These two methods are dual of each other.

The LC method associated with p works by allocating the first unit according
to the probability distribution p(z), the second unit according to p(x— e;) where
1 is the recipient of the first unit, and so on. Therefore given the demand profile
x, the sequence of random variables r(1, z), ...,7(t, x), ...,r(xy — 1, ) is equiva-
lently described as a probabilistic scheduling sequence r(x) = (i1, ..., ity oy lay ),
where given iy, ..., i;_1, the probability distribution of i; is p(x—(e;, +...+€;,_,)).
That is to say for any given ¢ the probability distribution of e;; + ... + e;, is
precisely r(t, z).

Thus any LC rationing method can be described as a random scheduling
process, and by duality the same is true for any UC rationing method'®. In this
representation, Lower Composition means that the probability distribution of
i; only depends upon the remaining (unfulfilled) demands after the realization
of 41,...,4;—1 : this is “history independence” as in Section 3. Upper Compo-
sition is similarly interpreted as “future-blindness”. Consistency means that
the (probability distribution of the) random (i, ) - subsequence of r(x) only
depends upon the demands z;,z;, not upon the demands of other agents.

We give now more details on the non trivial relationship between rationing
methods and probabilistic scheduling methods.

Remark 3 In the deterministic model, a resource monotonic rationing method
(t <t =r(t,z) <r(t' z)) can be interpreted as a scheduling method, because
the increments of the sequence r(1,z),7(2,z),... are the coordinate vectors
€iy s €iys --.. In the probabilistic model, Resource Monotonicity means that r;(¢, x)
is stochastically dominated by r;(¢t + 1,x) for all 4,¢ and x. A probabilistic
scheduling method associates to any x a random sequence {i1,...,7,, } where
each agent 7 appears exactly xz; times. The corresponding random variables
€i, + ...+ €;, define a resource monotonic probabilistic rationing method. But
the converse statement is not true, except in the two agent case (|N| = 2). An
example below establishes this claim.

Fix a rationing method r, a rationing problem (¢,z), ¢ > 0,and a set A of
feasible allocations:

AC{y|0<y,<a foralli and yy=t}

Denote by A~! the set of its predecessors in the problem (¢ — 1,x) :

A7'={y | 0 <y, < w; for all i and for some j : y + e;€ A}

15 Given iz - bt+1, the probability distribution of 4 is p(x — (eiIN 4.+ eit+1))'
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If r can be deduced from a probabilistic scheduling method, any sequence
{i1,..,izy } passing through A must pass through A~! as well, therefore the
inequality:

r(t, @) (A) < r(t—1,2)(A7Y) (6)

is a necessary condition for such a representation of r. Conversely, if this in-
equality holds for all ¢, x and A, it is easy to show that r is the “projection” of
a probabilistic scheduling method.'6

We give now an example of a resource monotonic rationing method violating
inequality (6). We set « = (3,3, 3) and define r(¢, z) for t = 5, 6:

r(5,x) (0,2,3),(3,0,2),(2,3,0) each with proba. 1/9
(2,2,1),(2,1,2),(1,2,2) each with proba. 2/9

r(6, ) (2,1,3),(1,3,2),(3,2,1) each with proba. 1/9
(2,2,2) with proba. 2/3

Resource Monotonicity follows because

ri(5,x 1,2 or 3 with respective probas 2/9, 5/9, 1/9
ri(6,2) = 1,2 or 3 with respective probas 1/9, 7/9, 1/9

~

One can even check a stronger property than RM namely for all z :

r(5,2)(Y > 2) <r(6,2)(Y > 2) and r(5,2)(Y < z) > r(6,z)(Y < z)

However, let A be the support of r(6,x) namely A = {(2,2,2), (2,1,3),
(1,3,2), (3,2,1)} so that A=! does not contain (0,2, 3), (3,0,2) or (2,3,0): thus
inequality (6) fails.

6 Three basic methods and their characteriza-
tion

We define successively the proportional, fair queuing and fair queuing* methods.

They are the counterpart in the probabilistic model of the proportional, uniform

gains and uniform losses methods of the classical model with divisible goods and
deterministic allocations. All three methods are equitable in the ex ante sense.

Proportional

16 This follows easily from Hall’s theorem, see, e.g., Bazaraa et al.[1990]. We thank Rakesh
Vohra for pointing out this result.
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The proportional method follows in Lemma 3 from the proportional proba-
bility distribution p;(z) = x;/xn. It is the corresponding LC method, and the
UC method as well; in particular it is a self-dual method. Its interpretation as
a probabilistic scheduling method is especially simple: given the demand pro-
file x, we place x; balls labeled ¢ in an urn, for 4 = 1,2,...,n. The scheduling
sequence obtains by drawing successively all balls from the urn without replace-
ment (equivalently, all sequences where each i appears z; times are equally
probable). In particular, the expected shares are “classically” proportional to
individual demands. The easy proof of the above facts is omitted, see Moulin
[1999a).

The proportional method meets all six axioms introduced in the previous
section. As already noticed in Section 2, it does not meet Equal Treatment Ex
Post.

Fair Queuing

This method allocates one unit to each agent in successive round robin fash-
ion, dropping an agent only when his demand is met. To be precise, the method
first selects at random and with uniform probability an ordering of the m; agents
with a positive demand, and allocates the first m units in that order; it draws
next an ordering of the mo agents whose remaining demand is positive and so
allocates the next ms units; and so on.

This definition makes clear that fair queuing violates Lower Composition:
the recipient is of the second unit is selected with uniform probability among
Ny \ {i1}, where Ny is the set of agents with a positive demand and 41 received
the first unit: knowledge of the vector x — e; is not enough to determine the
scheduling process from time 2 onward.

An equivalent definition of fair queuing describes how it allocates successive
units of deficit. This formulation makes clear that it meets Upper Composition.
Fair queuing distributes the first unit of deficit with uniform probability among
all agents with the largest demand: see Figure 1.

pilz) = ﬁ ifi e N()=0ifi ¢ N(z)
where ¢ € N(z) iff {z; > z; for all i}, n(x) = |N(x)] (7)

The third definition of fair queuing makes the probability distribution r(¢, x)
explicit. It relies on the uniform gains method of the classical model. To a ra-
tioning problem (¢, x) we associate the real number X defined by ), min{\, z;} =
t. Let k be the largest integer bounded above by A and M (¢, ) be the set of
agents ¢ such that A < z; (M (¢, ) is non empty when ¢ < xy), with cardinality
m(t,x). Notice that m(t,x) (A — k) = ¢ is an integer (possibly zero). Now the
distribution of r(t, x) is as follows:

givemin{k, z; } units for sure to ¢, for all 4, and spread ¢ units over M (¢, x)

with uniform probability (giving at most one unit per agent)
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See Figure 1, in the case n = 2. This figure shows that fair queuing is closely
related to the family of equitable (in the ex post sense) deterministic standard
of losses methods: drawing at random and uniformly a scheduling sequence
from that family is a representation of fair queuing as a probabilistic scheduling
method. This observation holds true for any number of agents.

The equivalence of the three above definitions of fair queuing is proven in
Moulin [1999a]; it is easy to check directly. In particular, the expected shares
are equal to the uniform gains shares of the classical model, namely E[r(t, x)] =
min{\, z;}.

The fair queuing method meets all axioms discussed so far, except Lower
Composition. In particular, it is equitable both in the ex ante (ETEA) and ex
post (ETEP) sense.

Fair Queuing*

The fair queuing* method is the dual of fair queuing. Therefore it is the LC
method associated via Lemma 3 with the probability distribution (7). Alter-
natively this method allocates successive units of deficit by means of the round
robin distributions discussed above. See Figure 2 in the case of n = 2, showing
the probabilistic scheduling interpretation of fair queuing*: it picks at random
and uniformly among all equitable deterministic standard of gains methods. Fair
queuing® meets all the axioms introduced so far except Upper Composition.

The Consistency Property is crucial to the characterization of the rich family
of standard of gains/losses methods in the deterministic (Propositions 1, 1*
above) and probabilistic (Theorem 2 below) models. Remarkably, it plays no
role in that of our three basic methods.

Theorem 1 a) The proportional method is the only probabilistic rationing method
meeting Lower and Upper Composition, and Equal Treatment Fx Ante.

b) Fair Queuing is the only method meeting Upper Composition, Demand
Monotonicity*, Equal Treatment Ex Ante and Equal Treatment Ex Post.

¢) Fair Queuing* is the only method meeting Lower Composition, Demand
Monotonicity, Equal Treatment Ex Ante and Equal Treatment Ex Post.

Statement a is Theorem 1 in Moulin [1999a]. The proof of statements b and
¢ is in the Appendix. All three statements are tight characterization results:
see the discussion in Section 8.

7 Probabilistic standard of gains/losses

We describe a rich family of methods containing equitable as well as inequitable
methods (for instance the fixed priority methods). We start by the somewhat
special case of a two agent problem.

Lemma 4 Let z = ze; + zjej, i # j, zi, zj > 0, be an element of NV of
dimension 2 and r* be a rationing method restricted to [0,z]. Then r* meets
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LC and DM if and only if it is associated (via Lemma 3) with a (restricted)
probability distribution p* such that:

pZ(zie; +x5€;5) is non decreasing in x; and non increasing in ;, for 0 < x <
z.

Definition 2 A (probabilistic) standard of gains is a preordering'” of N x (N'\
{0}), non decreasing in its second coordinate:

(i,2;) 2 (t,x; + 1) for all i, all z; =1,2...

An indifference class of the standard of gains -, denoted 6, takes the form

6= gs{z} x I; where I; = [a;,b;] or [a;,00[ is an interval of N\ {0}

The set of agents S is called the support of § and its cardinality is the type of 8.
The depth of § is the vector 6(6) = z where z; = |I;| (the cardinality of I;) for
all 7.

Given a profile of demands z,r € NV \ {0}, we let 6(x) be the indifference
class intersecting U(i, ;) and highest in =, and define the depth of x in §(x) as

the following vector d(z):

d(x); =0if (i,z;) ¢ 6(x), =x; —a; + 1 if (i,2;) € 6(x)

where a; is the smallest integer s.t.(i,a;) « (4, 2;)

Notice that if (4,;) is the unique maximum of 27 among (j, x;), the depth
d(x) is of dimension 1 and borne by z;. If §(x) is of type 1, the maximum of -
among (j, ;) is unique but the converse is not true: for instance if = = 3e;, the
unique maximum of 7 is (¢, 3) but the support of the indifference class of (i, 3)
may contain other agents as well.

Definition 3 Standard of gains methods

Given are a standard of gains 7, and, for each indifference class 6 of type
2, a rationing method % on [0, z], where 0(8) = z, satisfying LC and DM, and
with probability distribution p* (Lemma 4).

The corresponding probabilistic standard of gains method is the LC method
associated (via Lemma 3) with the following probability distribution p. For all
non null demand profile x:

pi(x) = 1 if(i,z;) = (o) forall j#1i
p) = p(y) i 8(w) is of type 2, = = 0(8(x)) and y = d(x)
p(x) = yiNy if 6(x) is of type 3 or more and y = d(x)

17complete, transitive
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The definition makes sense because if §(z) is of type 2 or more and (i,x;) is
the unique maximum of >, the depth y = d(z) is borne by e; hence p;(y) = 1
under any rationing method.

Given a demand profile x, the above method identifies the depth of = in its
indifference class, y = d(x), and allocates the first yn units of gains as follows:

e all units go to agent i if (¢, ;) is the unique maximum of 7
e use r* at the profile y if §(x) is of type 2 and z = 0(6(x))
e use the proportional method at profile y if §(x) is of type 3 or more.

After yn units have been so allocated, the remaining demand profile is x’ =
x — y. By construction, §(z) is an indifference class below 6(z) and we repeat
the process to allocate the next y units, ¥’ = d(z’).

Remark 4 There is some flexibility in the representation of a probabilistic ra-
tioning method by a standard of gains in Definition 3. We can sometime alter
the pattern of indifference classes of type 1 and 2 without changing the rationing
method. Two adjacent indifference classes of type 1 involving the same agent
can be concatenated into one indifference class; two adjacent indifference classes
with total support involving only two agents (S1 U Sy = {4,j}) can similarly be
merged into a single class of type 2 (provided we concatenate the corresponding
methods r%).

In the rest of this section, we illustrate the rich family of s.g. methods, as
well as its dual, the standard of losses methods.

The proportional method corresponds to the preordering =~ for which all
pairs (i,x;) are indifferent. The fair queuing* method corresponds to the finest
symmetric preordering 77, namely:

i, X Z jaw' ngzzm
~ J J

Here the indifference class () contains the pairs (i, maz; x;) for all ¢, and the
depth d(z) is the sum of the unit vectors e; over all agents with largest demand.
Fair queuing* gives equal probabilities of receiving first unit to all agents with
the largest demand: this is, as in Definition 3, the proportional method applied
at d(x).

The interesting subset of standard of gains methods equitable in the ex ante
sense is now described. The preordering 7 is symmetric if x; = x; = (i, ;) <
(4, ;). All indifference classes are then of type n, and the preordering is entirely
described by a finite or infinite partition of N\ {0} in “indifference intervals”
I, = [bg—1,b,), where by = 0 and by, < bg41. Of course we set by = +oo if the
partition is finite and I is its highest interval.

Given the sequence b,, we write for all positive integer y(a) = ¢ iff by < a <
bg+1, so that (i,z;) Z (j, z;) iff y(x;) > v(z;). In our next statement we use the
following notations: e = (1,1, ...,1) and (a A b); = min{a;, b; }.
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Lemma 5 i) Assume N contains three or more agents. To any (finite or infi-
nite) increasing sequence by such that by = 0 and sup,by, = +00, we associate
a standard of gains method meeting Fqual Treatment Ex Ante as follows. Fix
a demand profile © such that max; y(z;) = ¢*, and write 9 = x A (bge) for
q=1,...,q":

e allocate proportionally the first xn — :L’?\; units at the profile x — x9

* *—1 * *—
e allocate proportionally the next x%; —x%,  units at the profile 27 — x4 !

° ...
e allocate proportionally the last x units at the profile x!

Conversely, a standard of gains method meeting ETEA is constructed as
above.

ii) If N = {1, 2} a similar statement holds, except that in each block |by_1€, bye]
we can use an arbitrary symmetric probability distribution p* as in Lemma 4.

To illustrate the above result, we give an example with four agents, N =
{1,2,3,4} and demands z; are distributed as follows within the indifference
classes

V(@) =3, Y(w2) =5, Y(ws) = y(wa) =
e the first (o — by) units are given to agent 2

e the next (x1 + by — 2bs) units are allocated proportionally between 1 and
2 with initial demands y; = 21 — b3, y2 = by — b3

o the next 2(bs —bs) units are allocated proportionally between 1 and 2 with
initial demands, y; = b3 — ba, 1 = 1,2

o the next (x3—+x4+2by —4b;) units are allocated proportionally with initial
demands y; = by — by for i =1,2,y; =x; — by for j = 3,4

e the last 4b; units are allocated proportionally with initial demands y; = by
for all ¢

Let us read the random scheduling sequence backward in the above example,
that is to say we look at the allocation of successive units of deficit. Because the
proportional method is self-dual, the above algorithm is simply reversed: the
first 4b; units are allocated proportionally, with initial demand y; = by for all ;
and so on.

This is the probabilistic counterpart of the representation of a deterministic
standard of gains method by a fixed path along which successive units of deficit
are handed out: Lemma 2. The fixed path generalizes to a “block-path”, with
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successive blocks |bge, byri1€]. The random scheduling sequence follows a pro-
portional sequence in each block moving upward from ]0,b;e], and restricting
individual demands in each block to the length of the block or the remaining
demand, whichever is smallest. Figure 3 shows an example with two agents:
notice the similarity with Figure 2 for Fair Queuing*.

The above description applies to all standard of gains methods equitable ex
ante. For non equitable standard of gains methods, a similar representation
along a fixed (asymmetric) block-path can be given, provided a certain archi-
median property is satisfied: this probabilistic counterpart of Lemma 2 is the
subject of Remark 5 below.

Like in the deterministic case, the duality operation transforms standard of
gains into standard of losses methods. Fix a preordering of N x (N\ {0}) as
in Definition 2, now called a standard of losses, and use it as in Definition 3
to construct a probability distribution p(x) on N for all . The correspond-
ing UC method (Lemma 3) is the standard of losses method associated with
our preordering. Of course for each indifference class of type 2 we must pro-
vide a rationing method meeting UC and DM*, and described by a probability
distribution p* as in (the dual of) Lemma 4.

The prominent examples of such methods are the proportional and fair queu-
ing methods. More generally all standard of losses methods equitable ex ante
are described by the dual of Lemma 5. Their random scheduling sequences can
be described backward by the algorithm of Lemma 5 (now interpreted as dis-
tributing successive units of deficit) or forward by means of the fixed block-path
described three paragraphs above. The latter description is more natural in the
scheduling context: for the sake of comparison with Lemma 5, we describe the
corresponding algorithm.

Fix an increasing sequence b, as in Lemma 5 and assume |N| > 3 for brevity.
Given a demand profile = we write 29 = x A (bge), and set max; y(z;) = ¢* so
that ¢ 1 =z :

e allocate proportionally the first 2}, units at profile z!.

e allocate proportionally the next (z3 — xk;) units at profile (2% — x!)

e ...
e allocate proportionally the last (xn — x?\;) units at profile (1: — az‘J*)

Comparing the two algorithms, above and in Lemma 5, shows why a standard
of losses typically fails LC. After the first unit is allocated, say to agent i, his
reduced demand z} — 1 (in the first block) results in a lower chance of the
next unit. But if z; > b; + 1, the remaining overall demand =’ = z — ¢; has
2’ A (bre) = x A (bie) = ' where the chance for i to get the first unit did not
drop.

Figure 4 illustrates an equitable s.l. method with two agents. It is similar
to Figure 1 depicting fair queuing.
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Remark 5 We discuss the possibility to represent a s.g. method (resp. s.l
method) by means of a fixed block-path, namely the probabilistic counterpart
of Lemma 2 (resp. 2*). Consider the following archimedian property of a (prob-
abilistic) rationing method:

for alli,j,1 # j, all x;, there is x; s.t. (1, z,e; + xje;5)(ej) >0

(resp. r* (1,z,e; + zje5)(ej) > 0)

If r is a s.g. (resp. a s.l.) method, the archimedian property amounts to
the same property (5) as in the deterministic case. This holds if and only if the
indifference classes of - can be increasingly enumerated as a (finite or infinite)
sequence &', ..., 6%, ... We write the indifference class 67 as:

81 = %{i}x]bf_l, b] where bI' = b? if i is not in the support of 67

In the above definition, we set ° = 0. By construction we have sup,b! = +o0,
whether the number of indifference classes is finite or infinite. The sequence
81, ...,89, ... is thus described by the increasing sequence bt ..., b4.

We now generalize Lemma 5 as follows. Fix a sequence in NV b9 ... b9, ...

such that 8% = 0,67 < b9T1, and supyb! = +o0, and for each block of dimension
#

2, fix a rationing method 79 restricted to [0,b7 —b91], as in Lemma 4. We write
vi(x) = q iff b < a; < bITT

We define an archimedian standard of gains method as follows. Fix a profile
x and write maz;vy,(x;) = ¢*, 29 =z A b9 :

e allocate the first xny — x?\; units at profile # — 7" : proportionally if
bt — b9" is not of dimension 2; according to r¢ ™ otherwise.

e allocate the next x?\; — x?\;_l units at profile 7 — ¢ ™" : proportionally
if 57" — b2 "'is not of dimension 2; according to r¢ otherwise.

e and so on.

Conversely, every archimedian s.g. method is constructed as above from a
sequence b7, together with a method ¢ every time that % —b9~! is of dimension
2. We omit for brevity the dual statement about archimedian standard of losses
methods.

8 Main characterization results

Theorem 2 i) Every standard of gains method (Definition 8) meets the three
properties Consistency, Lower Composition and Demand Monotonicity. Con-
versely a probabilistic rationing method meeting these three properties is a stan-
dard of gains method.

ii) The set of standard of losses method is similarly characterized by the
combination of Consistency, Upper Composition and Demand Monotonicity*.

Corollary 3 The set of standard of gains methods described in Lemma 5 is
characterized by the combination of the four axioms: Consistency, Lower Com-
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position, Demand Monotonicity and Equal Treatment Fx Ante. (We omit the
straightforward dual statement).

Both statements in Theorem 2 are tight results for the same reason that
Propositions 1 and 1* are tight: Remark 2 in Section 4.

We check that the Corollary is tight. Drop Consistency and the equal chance
of gains method '® meets all three other axioms: this is the LC method such
that p(x) is uniformly distributed among all agents with positive demand. Drop
Demand Monotonicity, and the following ultraprogressive method emerges: it
is the LC method where p(x) is uniformly distributed among all agents with
smallest demand. Just like its deterministic counterparts (see Remark 2) this
method meets CSY and LC, but fails DM. Tightness of the Corollary with
respect to the LC and ETEA axioms is obvious.

Finally, we check that statement ¢ (and, by duality, statement b) in Theorem
1 is tight.

Dropping LC allows Fair Queuing, dropping ETEP allows the proportional
method, and dropping ETEA allows the deterministic s.g. methods equitable
ex post (discussed just before Remark 1 in Section 4). Dropping DM allows the
following variant of the wultraprogressive method above. Given a profile x, we
let N'(z) be the set of agents with the lowest demand. These agents are served
first by Fair Queuing. Then the agents in N?(x), with the next lowest demand,
are served in full by Fair Queuing. And so on.

9 Lower cum Upper composition

The set of rationing/scheduling methods meeting Lower and Upper Composition
cannot be easily described. This is true even if we add the requirements of
Demand Monotonicity and Demand Monotonicity®, and is explained at the end
of this section.

However, when we restrict attention to methods that are either deterministic,
or fully random (in a sense made precise below) the impact of the combination
LC+UC can be described.

a) deterministic methods

For any ordering o of N (where o(i) = 1 reads i is first), we denote by prio(o)
the associated fixed priority method (Remark 1); we also write top(c) = o=1(1)
and bot(c) = o~ 1(|N]).

Definition 4 For each nonempty subset S of N, choose an ordering s of S,
such that:

top(cs) =i = 0g\; and og coincide on S\ i

bot(os) =j = og\j and s coincide on S\ j

The corresponding quasipriority method is defined as:

r(z) = prio(cs) where S = {i € N | z; > 0} is the support of x.

18 Moulin [1999a]
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With two agents, | N| = 2, the two priority methods are the only quasipriority
methods. With three agents, there are twelve quasipriority methods, six are the
fixed priority methods and six are as follows:

O123:1>2>3; 013:3>1

Here agent 3 has priority over 1 if agent 2 is out, but otherwise agent 3 comes
last after 1 and 2.

The number of quasipriority methods grows rapidly with |N| : there are 624
for four agents. The following facts (of which the proof is omitted for brevity)
show that the set of quasipriority methods becomes complex as n grows. For
any tournament on N (complete, antisymmetric relation) there is a quasipriority
method that agrees with the tournament on pairs. On the other hand, there
are quasipriority methods in which for any pair 4, j, there is a subset S with ¢
preceding j in og and a subset S’ with j preceding i in og!°.

Proposition 2 A quasipriority method meets Lower and Upper Composition,
Demand Monotonicity and Demand Monotonicity*.

Conversely, a deterministic rationing/scheduling method meeting LC, UC,
DM and DM* is a quasipriority method.

Proposition 2 is a negative result, because a quasipriority method is essen-
tially as inequitable as a priority method: for instance, it violates the mild
archimedian properties of Lemma 2 and 2*, and, a fortiori, Equal Treatment Ex
Post.

When we drop the DM and DM* requirements, many more methods emerge,
that combine strong inequity with unpalatable lack of monotonicity. For in-
stance, assume N = {1,2,3} and fix a standard of gains > (Definition 1).
Denote by prio(i, j, k) the priority method where i is served first, followed by
j then k. We write ¢ + 1 (resp. ¢ — 1) with the convention 3 +1 = 1 (resp.
1 —1=3). The following method meets UC and LC:

ife; > Ofori=1,2,3and (4,2;) > (j,x;), (k,zx), use prio(i —1,i,i+ 1)
ife; = 0, use prio(i+1,i—1)

Proposition 2 is a tight result. Drop DM* and the following method in N =
{1,2,3} meets LC, UC and DM:

ifxs > Oand z3=0,1,...,9: use prio (1,2,3)
if to = 0and/or 3 =10,11,...,: use prio (2,3,1)

19The first example occurs with 5 people ordered as: 1 >2>3>4>5,5>1>2 > 3,
4>5>1>2,3>4>5>1,2>4>1,4>1>3,1>3>523>5>25>2>4, and all
other orderings deduced from Definition 4.
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b) probabilistic methods

We already know (statement a, Theorem 1) that the only LC+UC method
equitable ex ante is the proportional method. Moreover, there is no LC+UC
method equitable ex post?’. We describe below a rich family of LC+UC meth-
ods that contains the proportional one and, as a limit case, the fixed priority
methods.

We introduce two new axioms, conveying yet another principle of equity in
our model: we use the notation E(Y;) for the mean of the random variable Y;:

Positive Shares (PS): {z; > 1,¢t > 1} = {E(r;(t,z)) > 0}

Positive Risks (PR): {x; > 1,t <y — 1} = {E(r;(t,2)) < x;}

The two axioms are dual of each other. Positive shares says that an agent
with a positive claim cannot be entirely left out of the distribution: he receives
at least one unit with positive probability. Thus PS is an individual rationality
condition. Dually, Positive Risk says that every agent with a positive demand
must bear a share of the overall deficit z — t.

The proportional method meets PR and PS. Fair queuing is a PS method
but it fails PR.

We define the family of weighted proportional methods, axiomatically char-
acterized in Theorem 3 below. Every such method is described by a system of
weights (w;;), one for each pair (¢,7),i # j :

for all 4,7 : wy; > 0 and w;; +wj; =1

We need some notations to define our methods. Given a demand profile z, recall
that a scheduling sequence s = {41, 2, ..., i, } is such that each agent 7 appears
exactly x; times. We denote by A(z) the set of such sequences. We write a;;(s)
for the number of times j precedes i in s, namely the number of pairs (¢,t),
1<t <t <uap, such that i, = j and iy = i. Note that a;;(s) + a;ji(s) = z;.z;.
Finally we denote by P the set of ordered pairs (4,j) with ¢ # j and by P* the
set of unordered pairs. Thus |P| = n(n — 1) whereas |P*| = n(n —1)/2.
Given a set of weights (w;;), and a sequence s we define

wis)= [[ wiy™ and D)= 3 w(s) (8)

(i,7)€P sEA(x)

If © = x;¢;, the set A(x) contains a single sequence and w(s) = 1, so that
D(z) =1 in this case. The following identity, where S(z) denotes the support
of (i € S iff x; > 0), follows easily from (8):

D)= Y (][ wij)-Dx—¢)) (9)

JES(x) iEN\J

20this is easy to check by looking at the case N = {1,2} and the demand = = (2, 2).
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Therefore the following vector p(z) is a probability distribution over the support
of x:

.\ D(x—e; )
pji(x) = ( H wm)w for all j € S(x) (10)

JEN\J
We define the w—proportional method as the LC method distributing the first
unit according to the above probability (Lemma 3). Equivalently, the w— pro-
portional method is the UC method distributing the first unit of deficit according
to:

z;\ D(x —€;) )
gi(z) = (H Wiy )W for all i € S(x) (11)
JEN\i
Thirdly, under the w—proportional method the probability distribution of the
random variable r(t, z) is computed as follows:

rta)(z) = (] wi™ )= (12)
. D(x)
(1,7)€EP
Lemma 6 The three definitions above coincide. In particular, the w—proportional
method meets LC, UC, PS and PR.

The proof is omitted for brevity. In some simple cases, the function D(x)
can be computed explicitly. One instance is when w;; = 1/2 for all ¢, j where
we find the proportional method. Indeed (8) reads in this case:

J,‘N!

Ly !

from which the proportional probability follows in (10) and (11). Notice that
(12) yields the probability distribution of the proportional method:

w(s) = 27X p"i% for all s € A(x), and D(x) = 97 X it

t!(CL‘N — t)'

LIL‘Z'!
e == e

IN- !

The second simple case is for two agents N = {1, 2}. In this case the weighted
proportional methods form a one-dimensional family and we set A} = w2, Ao =
w1, with 0 < A; < 1 and Ay + A2 = 1. The function D can be computed
explicitly. Define for all integer m,m > 1:

a(m) = Z APE AT and A(m) = Ha(k) with the convention a(1) =1
1 1
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then we have:

A(.’L‘1 + .’L‘Q)

Dy w2) = 205700

which follows easily from the recursive property (9) and the limit conditions
D = 1 on the axis. Therefore the probabilities p and ¢ ((10),(11)) take the
form:

a(x;)
xr1 + .732)

ey ofxg)
T a(zy + ao)’

for {i,7} =1{1,2}
(13)

pi(z1,22) = A qi(x1,22) = A?j-a(

We go back to the general case where |N| is arbitrary.

Theorem 3 The family of w-proportional methods is characterized by the
combination of Lower Composition, Upper Composition and Positive Shares.
The statement is preserved if the latter axiom is replaced by Positive Risks.

Within the family of w—proportional methods, the Demand Monotonic-
ity and Demand Monotonicity* requirements impose some restrictions on the
weights w;;. Specifically, the relation i 7 j iff w;; > wj; must be transitive?!;
yet we do not know if this condition is sufficient to ensure DM and DM*.

The entire family of probabilistic rationing methods satisfying Lower and
Upper Composition is significantly more complex than its two subsets just dis-
cussed, namely the quasipriority (Definition 4) and weighted proportional meth-
ods (Lemma 6), except if we have only two agents.

If IN| = 2, the set of LC+UC methods consists exactly of the two fixed
priority methods and the w—proportional methods: this is Lemma 4 in Moulin
[1999a).

For three or more agents there are a large number of methods that satisfy
LC and UC but not PS (or PR). One class of examples arises by allowing some
of the weights to be zero. A weight w;; = 0 corresponds to asking that agent i
has absolute priority over agent j. That is j should not receive any units until
’s claim is completely filled. If there is no cycle of zero weights, then we still
have D(z) > 0 for all z and we can still define a scheduling method satisfying
LC and UC by formulas (8)-(12). This is still the unique scheme with these
weights, although the proof of Theorem 3 requires a slight modification.

This leaves the case where there is a cycle of agents, each one having abso-
lute priority over the next. In this case, D(z) = 0 for all  and the formulas
(8)-(12) are meaningless. However for a cycle of zero weights a large number
of scheduling methods satisfying LC and UC can be derived from these formu-
las. Instead of setting certain weights equal to zero, consider taking a limit as
those weights approach zero, possibly at different rates. Formulas (10)-(12) are
rational functions in the weights and are bounded between 0 and 1 for positive

21 The proof of this claim is available upon request from the authors.
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weights. Therefore any sequence of weights tending to zero will have a con-
vergent subsequence and any subsequential limit will be a scheduling method
satisfying LC and UC. This leads to a large family of scheduling methods.

However, even this does not exhaust the full scope of LC and UC methods.
The limit methods tend to behave much like the quasipriority methods. The
units are allocated by a method which is nearly a priority method, however
which (nearly) priority method is used depends upon the details of the claims.
It is possible to construct more complicated algorithms, where for any given
set of claims the scheduling method appears to be a limit of w-proportional
methods, but which limit it resembles depends upon the exact claims.

For three agents, this leads to the following infinite parameter family of
methods. Suppose the three agents are 7,j, and k& and we want weights w;;
=0, wjr = 0, and wy; = 0. To completely describe the scheduling method, one
chooses a preordering < of {i, 7, k} x (N\{0}) which is strictly increasing in the
second coordinate. Furthermore for each indifference class C' of the preordering,
we choose positive weights w;(C), w;(C), and wy(C). These weights should sum
to 1, and if an agent is not represented in that indifference class his weight should
be zero.

The scheduling algorithm is as follows. If only two of the three agents make
nonzero claims, then we distribute the units using the priority method given
by the zero weight (i > j, j > k, or k > i). If all three agents make nonzero
claims z;, x; and 3, and one of the pairs (4, x;), (j, z;),or (k, 1) has uniquely the
highest rank, then we fill the claims using a priority method i > j > k, k > ¢ > j
or j > k > i chosen so the highest rank claim is filled second. If there is a tie
for the highest rank, then the situation is slightly more complicated. Suppose
(4,2;) and (j, x;) are of equal rank and greater rank than (k, zy). Then we will
begin by filling part of &’s claim (possibly none), then fill all of i’s claim, then
all of j’s claim, then finally the remainder of k’s claim. The distribution of the
amount of k’s claim filled in the initial segment depends upon the ratio of the
weights w;(C') and w;(C) for the indifference class containing (¢, z;) and (4, x;).
A similar description holds for a three way tie.

For three agents these are in fact the only possibilities, but analyzing the
possibilities for more agents seems infeasible.

10 Concluding comment

We have characterized three rich families of probabilistic rationing/scheduling
methods by combining, successively CSY and LC (standard of gains: Theorem
2), CSY and UC (standard of losses: Theorem 2), LC and UC (weighted pro-
portional: Theorem 3). What happens when we combine these three powerful
properties?

Theorem 2 in Moulin [1999a] answers this question: every such method works
by partitioning IV into priority classes N; U Nao U...U Ng — so the agents in Ny
are served in full before those in Ni11 get anything —, using the proportional
method within each priority class with three or more agents, and using one of
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the LC+UC methods (given by (13)) in each priority class of two agents.

This set of methods is quite inflexible from the standpoint of equity: the only
way to depart from the proportional method is to introduce absolute priority
between two subgroups of agents. Thus every method but the proportional one
is severely inequitable, which stands in sharp contrast with the three families
characterized in this paper, where many equitable or nearly equitable methods
are available.
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Appendix: Proofs

1. Proposition 1

It is possible to deduce the result from Theorem 2. However, the direct proof
of Proposition 1 is very simple and serves to support the intuition for the more
involved proof of Theorem 2.

a) Statement “only if”

A s.g. method meets LC by definition. To check DM, we fix a profile = and
an agent i, and compare the sequences r(x) and r(x +¢;). If ¢ appears at times
t1,ta,...,tz, in 7(z), then ¢ appears exactly once in the first ¢; terms of r(z+e;),
and is the (t; +1) — th term of that sequence; moreover the last (zy —t1) terms
of r(x) and r(x + e;) coincide. DM follows.

Consistency means that the (i,j)-subsequence of r(z) (by deleting all agents
other than ¢ and j) is independent of zj for k # 4,j. But this subsequence
obtains from ordering the pairs (i,y;),1 < y; < ;, and (j,y;),1 < y; < x;
according to > .

b) Statement if

Let r be a method meeting CSY, LC and DM. We write II(z) = i iff r(1,z) =
e;. We define a binary relation > on N x (N'\ {0}) :

(i,2;) = (i,2)) iff &, > @}, and for i # j : (i, 2;) = (j,x;) M I(zie; + xje;) =i
The relation > is clearly complete and antisymmetric; we check its transitivity:

= (4,2) = (Jyzj) = (i,2;) = (j,zj) by DM
(Zﬂz7) s (.]a z]) - (.77x;) = (Zﬂz7) s (]a LE;) by DM
= (j,z;) = (i,2}) = x; > x, by the above property

It remains to check the case of three different agents i, j, k such that (i,z;) -
(J,zj) and (j,z;) > (k,zr). Denote © = x;e; + xje; + xre, and consider the
sequence 7(x). It cannot start by j otherwise CSY would imply that r(x;e; +
xje;) starts by j as well. It cannot similarly start by &, so r(x) starts by ¢. Then
CSY implies that r(x;e; + xpey) starts by ¢ as was to be shown.

We pick now an arbitrary profile = and let (i, ;) be the unique maximum
of = . By (i,2;) > (j,z;) and CSY, r(z) cannot start with j; as this is true for
all j, j # i, we conclude II(z) = i. By Lemma 1, r is the s.g. method associated
with > .

2. Theorem 1, statements b and c

a) The first definition of fair queuing makes clear that it satisfies DM; the
dual definition shows UC; the two equity properties are obvious.

b) We prove that a method meeting LC, DM, ETEA, and ETEP must be
fair queuing®. Our method is described by the function p(x) as in Lemma 3.
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We use the following notation for all z in NV :

T = max v, T(x)={i|x; =T}, R(z) ={i|z; =T — 1}

and speak of a top agent in T'(z) and a runner up in R(z). We denote by
A(t,t') the set of profiles x with ¢ top agents and ¢’ runner-ups: |T(z)| =t and
|R(z)|=t. Thust > 1,¢/ > 0 and t + ¢’ < n.

We must show that p(z) is the uniform distribution over T'(x). We prove it
on A(t,t") by induction on ¢ and t'. Write P(t,t') if p is as desired on A(¢,t') .

P(n,0) follows from ETEA. Assume P(t,n — t) holds for some ¢ > 2 and
show P(t —1,n —t+1). Choose = in A(t —1,n —t+ 1) and ¢ a runner up in
x. As x+e; is in A(t,n —t) we have p;(z + e;) > 0. Suppose p;(z) > 0 : then
when we allocate two units at profile x 4 e;, agent ¢ might get both units:

proba{ri(2,x + e;) = 2} = pi(z + e;).pi(x) >0

This contradicts ETEP, because in x + e; agent ¢ and any j in T(x) have equal
demands. Hence p;(z) = 0 for any ¢ in R(x). As T'(z) = N\ R(x), ETEA implies
that p is uniform on T'(z).

We have shown P(t,n —t) for all t = 1,..n. Next we show P(¢,t) for all
t,t' by decreasing induction on t + t'. Let x be an arbitrary profile in A(¢,t)
and ¢ be a runner up in x. As z +e; is in A(¢t+ 1,t'), the inductive assumption
shows p;(z +e;) > 0. As in the previous paragraph, p;(z) > 0 would bring
a contradiction of ETEP. Thus p;(x) = 0 for all runner-ups. Next we pick 7
outside of T'(x) and R(z), namely x; < T — 2. Consider 2’ = z+(T — z; — 1).¢;,
and note that ¢ is a runner-up in 2’and =’ € A(t, ¢’ +1). By induction p;(z’) = 0,
hence by DM p;(z) = 0 as well. We have shown that the support of p(z) is T'(z)
and the desired conclusion follows from ETEA.

3. Lemma 4

The “only if” statement is clear. To prove “if”, we fix z and a function p*
as in the statement of Lemma 4 and we show that the corresponding method 7*
satisfies DM. As z remains fixed throughout the proof we simply write p;(x;, x;)
for the probability that ¢ receives the first unit given claims x;e; +x;e;. We use
the following notation:

P(a,t;z;,x;) = proba. i gets at most a units under r at problem (¢; z;, x;)
We must show P(a,t;x;,x;) > P(a,t;z; + 1,2;). To this end we compute:
P(a,t+ 1;2;,25)
= proba(i gets a of first t and j gets (t + 1) — st) + proba (i gets < a — 1 of first ?)

[P(a,t;zi,z5) — Pla— 1, @i, x5)] .pj(zi —a,zj +a—t) + Pla— 1, t; 24, x;5)
= P(a,t;zi,x).pi(x; —a,x;+a—t)+ Pla—1,t 2, 25).pi(x; —a,z; +a—t)
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Thus,

P(a,t+1;2,2;) — Pla,t + 1,2, + 1, z)
= [P(a,t;2i,75) — Pla,t;zi + 1,25)] .pj (2 — a, 25 +a — )
+[Pla—1,t;x5,x25) — Pla— 1,42 + 1, 25)] .pi(x; — a, x5 +a—1t)
+[P(a,t;z; + 1,25) — Pla— 1, t;2; + 1, 25)] .
(pi(xi +1—a,zj+a—1t)—pi(x; —a,z; +a—1t))

The last term is non negative by assumption. The previous two are non nega-
tive if we assume that the desired inequality holds for ¢. Thus we conclude by
induction on t.

4. Theorem 2

a) A standard of gains method meets CSY and DM. Fix a method r as in
Definition 3. We use a representation of r(z) similar to that in Remark 4. Given
a demand profile x, there are finitely many indifference classes intersecting with
Un(i,2}),1 < 2} < x;, and we can order them increasingly as &', ..., 6, with
corresponding depth z? = 6(67). Then we set:

pl=a A 2 = (- 2T YA+ 2T for ¢ =1,...,Q (with 2° = 0)

in particular 29 = z. For any ¢,1 < ¢t < zx — 1, we find the unique index ¢*
such that x?\,_l <t < z% and the random variable 7(¢,z) can now be written:

r(t,x) = e rzq* (t— x?\;f ,:v‘f — x‘f_l) (14)

q -1

in which the randomness only comes from the allocation of the last ¢t — x

units.

To check CSY, we “drop” agent 1 and compute the allocation of ¢ — 71 (¢, x)
units at profile (z |* 0). By (14) any realization y; of the random variable
rtz)isst o P <y <2l T4t —al T =t - x?\,\_ll Moreover, setting
gy =y, — 27 ~1 (14) also implies ¢ — x?\;_l

—y; < x{};\l — x(]’v\_ll Rearranging
these inequalities, we get:

.’L‘(]]V\ZI <t—y < x}lv\l (15)

On the other hand the sequence of indifference classes associated with z =
(2 ]* 0) is the subsequence of 6, ...69 where we drop &7 if it only intersects with
pairs like (1,2}). Thus the corresponding sequence ¢ is simply 29 = (27 |* 0),
provided we allow a repetition ¢ = £9~! for each dropped class. Inequalities
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(15) mean that the critical index ¢* is the same for (¢,2) and for (¢t — y1,7), for
any realization y;. Therefore:

r(t—y1, (@ 1 0) =301 4= (t—y — 7L L FT — 70

r(t =y, (@ 1 0) =300 4 (= FL T =, (a0, 21 0))

where ¢} =y — xi’tl

Comparing the above equality with (14), it is now clear that the consistency
of r follows from that of r*.

To check DM, we note that increasing x to z+e; can only add one indifference
class 697! to the sequence 67. If no class is added, then the critical index ¢* is the
same at (¢, x) and (¢, z+e¢;), and two cases may arise. If (z+e;)? 1 = 27 ~14e¢;
then (z + ei)g* — (z+ ei)gtl = 0 and the share of ¢ increases by one. If
(x +e;)% =1 =27 ! then the desired inequality follows from the DM property
of r%.

b) A method meeting CSY, LC and DM is a standard of gains

We fix a LC method r associated with the function x — p(z) (Lemma 3)
and assume the method is DM and CSY. We must show that p takes the form
described in Definition 3.

Step 1 — Constructing the standard of gains

We define first a complete binary relation R on N x (N\ {0}) :

(¢,z;) R (j, z;) “f {i=jand z; > z,}or {i # j and p;(x;e; + zje;) > 0}

Although R may not be transitive (as explained below), it is almost transitive,
in the following sense:

fori # j:(,e)R(,z;) and (j,2;)R(,@}) = (i, 2 R(j, @)

for i 7é J: (Z,:LH)R(Z,JZ;) and (Z,%;)R(], zj) = (Z7$1)R(jﬂ‘r])

for 4 7é J 7é k 7& i (vat)R(jva) and (]’ xJ)R(k7xk) = (lle)R(kzxk)
(16)

To prove the top statement observe:

(i,xi) R (], :cj) & 1> pj(xiei + xjej)
and x; > xf = pj(xie; +xhej) < pi(wie; + xje;5)

where the second implication follows from DM. The proof of the middle state-
ment is similar. To prove the last statement we set x = x;e; + x;e; + xrey
and proceed by contradiction: we assume p;(z;e; + xper) = 0 (the negation of
(4,2;) R(k,zr)), pi(xie; + xje5) > 0 and p;(xje; + xper) > 0. Apply CSY at
t=1:p(x) =(1—-pj(x)).pi(z;e; +xper). Therefore p;(z;e; + xrer) = 0 implies
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pi(z) = 0. By CSY again: p;(z) = (1 — pr(2)).pi(xie; + xje;), hence py(x) =1
and p;(xz) = 0. Apply CSY one more time p;(x) = (1 — p;(x)). pj(z;e; + xrer)
to reach the desired contradiction.

Properties (16) do not yield the transitivity of R, because chains alternating
between two agents are possible:

(4,2;) R (j,z;) R (i,x;) R (j,x;) R... with z; < 2} < ... and x; <2} < ...
(17)

But (16) implies that the above are the only inclusion minimal R chains.

We define the preordering - as the transitive closure of R. Thus (i,z;+1) 7
(i,2;) and 7 is a standard of gains: Definition 3. In the rest of the proof, we
use the notations introduced after Definition 3 for the indifference classes, their
support, depth, etc...

Step 2 — Properties linking =~ and p(z)

Denote by > the strict component of =~ . We note:

(t,23) = (J,z;) = pi(zie; + zje5) =1

Indeed, if p,(z;e; + xje;) > 0, we have (j,x;) 7 (i,2;). Next we consider an

~

arbitrary profile  and denote by T'(x) the set of agents whose claims are in the
highest indifference class of 7: i € T'(x) iff (¢,2;) 7 (j, ;) for all j. Our first
property is:
pj(x) =0 for j ¢ T(z) and p;(x) = pi(z |N\T@ 0) for i € T(x) (18)
We fix x, two arbitrary agents denoted 1,2 and we assume p;(x) > 0 . For all
1 > 3, CSY implies:
pi(x) = (1= pi(@)).pa(z [ 0) 5 pa(z) = (1 = pi(x)).p2( |* 0)

The left hand equality yields p1(x |* 0) > 0 hence we have:

p2(z)  pa(wier + x0e2)
pi(®)  pi(zier + x2e0)

In particular p1(z) > 0 = pi(x1e1 + @aea) > 0= (1,21) Z (2, 22).
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As the choice of agent 2 was arbitrary, we conclude p;(z) > 0= 1 € T'(x).
To prove the second statement in (18), we pick 1 ¢ T'(x) and invoke CSY:

pi(x) = (1 — p1(2)).pi(z |* 0) = pi(x |* 0) for all i > 2

Repeat this argument to eliminate successively all agents in N \ T'(x).
Our next property applies only to an indifference class of type three or more:

{type (6) > 3 and (3,z;), (j,z;) € 6} = 0 < p;i(zie; +xje5) <1 (20)

Choose a third agent k in the support of ¢, and (k,x) € 6. We have (i,x;) =
(k,z) and (k,xr) 2 (4, z;). We know from Step 1 that an inclusion minimal R-
chain from (i, z;) to (k, xx) or from (k, ) to (j, ;) takes the form (17). Linking
two such chains and using (16) repeatedly, we find (7,2;) R (j,x;)! Exchanging
the roles of i and j gives similarly (j,2;) R (i,2;) and (20) is established.

The last property applies when the highest indifference class among (i, x;),
denoted 6(x), is of type 3 or more. For any demand profile x, we have:

if type (6(x)) > 3:pi(x) >0 i€ T(x) (21)

We already know that the support of p(z) is contained in T'(z) (property (18)).
To show the converse inclusion, pick two agents 1 and 2 in T'(z), with agent 1 in
the support of p(x) (if no two such agents can be found, T'(x) is a singleton and
there is nothing to prove). As above, p;(z) > 0 implies equation (19). Because
6(x) contains (1,z1) and (2,x3), the right hand ratio is positive (by property
(20)), hence po(z) is positive as desired.

Step 3 — End of proof

On an indifference class ¢ of = with support S and depth z = 6(6), the
probability function p induces a LC method restricted to [0, z] as follows:

for all y € [0, 2] : p*(y) = p(y + ) where o; = a; — 1 for i € S, = 0 otherwise

(here I; = [a;, b;] as in Definition 2).

We check that the probability functions p?, one for each §, determine p
entirely in the following sense: for all x : p(z) = p*(d(x)) where p* corresponds
to 6(x).

Fix x and recall that T'(z) is a subset of .S, the support of 6(z). Hence for all
i € T(x) we have: (d(z)4+«); = (z;—a;+1)+(a;—1) = x;. Thus z and d(z)+«
coincide on T'(x); moreover T'(d(z) + ) = T'(z) by the definition of d(x) and the
fact that for all 7 in S, the support of §(x), we have 6(z) > (i,a; —1). These two
observations combined with property (18) imply: p(z) = p(d(x) + ) = p*(d(x))
as desired.
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Next we show that for any indifference class §, the corresponding method r*
on [0, z] meets DM and CSY. Observe that:

r*(ty) =r(t,y+a)for 0<y <z, t<yy

This follows from p*(y') = p(y’ + «) for 0 <y’ < y by repeated applications of
LC. Now r# is DM because r is. As for CSY, we have:

ri(t —ri(t,y), (y P 0)) = ri(t —rj(t.y +a), (y ' 0) +a)

We note that at profile z = (y |/ 0) + o, agent j gets none of the first yn ;
units because 6(x) = (j,a; — 1) and it takes yx\; units to exhaust the class
6(z). Thus we can (by CSY of r) replace (y |” 0) + « in the righthand term by
(y +a |7 0) and the desired conclusion follows, again by CSY.

The only thing left to prove is that over an indifference class ¢ of type 3 or
more, p* is the proportional method. First we note that p* satisfies the Positive
Share property

forall y, 0 <y<z:y; >0=pi(y) >0

Indeed, set © = y + a and note that T'(x) coincides with the support of y. By
(21), the support of p(x) = p*(y) is T(x) as well.

We conclude with the help of Theorem 3 in Moulin [1999a], establishing that
with three agents or more, the combination CSY, LC and PS is met only by the
proportional method. It is a simple matter, omitted for brevity, to adapt this
proof to the case of restricted rationing methods.

5. Proposition 2

Suppose we have a claim of & which is distributed by a method that satisfies
LC and UC. We consider the sequence (j1, j2, ..., jz» ) in which the claims are to
be distributed. Note that the combination LC and UC implies that if we select
any substring of this sequence which distributes a total claim of y, then it is in
fact exactly the order in which we would fill claims of y.

Suppose we fill part of agent i’s claim, then fill parts of other claims, then
return to agent i’s claim. Then part of our sequence will read (i, jg, .., 7). Pulling
the first element off this subsequence gives a string which fills the same total
claim y as pulling the last element off this subsequence. By LC and UC, these
must both be the unique sequence corresponding to claims of y. This is a
contradiction. Thus we see that each agent’s claim must be completely filled in
a single block. Rephrasing this, we see that any deterministic method satisfying
LC and UC must have the property that claims are always filled by a priority
method, though which of the |N|! priority methods is used may depend upon
the claims.
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Suppose we increase the claim of agent i. DM says that we cannot increase
the number of units allotted before we fill agent i’s claim and DM* says that
we cannot increase the number of units allotted after agent #’s claim. Thus the
agents served before agent ¢ may change, but the sum of their claims may not
change. Notice that LC and UC imply that if the agents served before agent 7
do not change, then the priority method used cannot change.

Fix a total claim x with nonzero claims by a set of agents M. Let z be a new
claim, with nonzero claims by the same set of agents M, but with each such
agent making a claim of v > x5,- We will show that the claims x and z are filled
using the same priority method. From this it follows that the priority method
depends only on the agents making nonzero claims. Suppose for the claim of x,
the priority method used is 1 > 2> ... > m.

As we increase agent 1’s claim to v, DM implies that he must remain the first
agent served and LC implies that the order for the other agents is unchanged.
Thus the priority method used does not change. Having already increased agent
I’s claim to v, suppose we increase agent 2’s claim to v. As remarked above DM
and DM* imply that the number of units distributed before agent 2’s claim is
filled cannot change. Since v > s, we see that agent 1 must still be the only
agent served before agent 2. Hence the priority method used cannot change.
Continuing in this way, we see that as we move from x to z increasing the claims
of agents in order, the priority method used can never change. Thus x and z
are filled using the same priority. Hence the priority method used depends only
on the agents making nonzero claims.

Finally note that for any rationing/scheduling method which selects for each
set .S of nonzero claims an ordering og of S and uses the corresponding priority
method, the conditions

top(cs) = i= 0g\; and g coincide on S'\
bot(cs) = j= 0g\; and og coincide on S\ j

are equivalent to LC and UC, respectively. Thus we have a quasipriority method.

Conversely, this shows that any quasipriority satisfies LC and UC. Also from
the discussion above, we see that since the order of the claims is unchanged by
increasing a nonzero claim, DM and DM* hold in this case. If a claim is increased
front 0 to 1, then DM and DM* are vacuous. Thus any quasipriority satisfies
DM and DM*.

6. Theorem 3

Suppose we have an allocation method which satisfies LC, UC and PS. Let
p;j(z) denote the probability that agent j receives the first unit given claims of
x and dually let p; (z) denote the probability that agent j receives the first unit
of deficit given claims of 2. Define weights w;; by:

wij = pj(e; +e;) =D;(e; + ¢5)
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Note that by PS, w;; > 0 and w;; + wj; = p;(e; +e;) + pi(e; +ej) = 1. We will

show by induction on zy that this method must agree with the w-proportional

method with these weights. Note that they agree if xy < 2 by construction.
Applying LC to 7(2, x),we have:

r(Lz)(e;) = piz)
r(2,7)(2e;) = pi(x)pi(z —e;)
r(2,z)(e;i +e5) = pi(z)pj(x —e;) + pj()pi(x — ¢j)

A consequence of UC is r(1,2) = r?(1,r%(2,2)), hence we get:

r(Lz)(e:) =r(2,2)(2e:) + Y 7(2,2)(e; + e;)P;(ei + €))
JEN\G

Plugging in the formulas for  and P in terms of p obtained above gives:
pi@) = pi(@)pi(e —e) + > (pi(@)p; (@ — e5) + pj (@)pi(x — €;))pilei + €))

Since ) p;j(x —e;) =1 we can rewrite this as:
JEN

Y pilw—epileite) | pi(@) = Y (pi(w —es)pilei + e;))p; (@)

FEN\i FEN\i

Assuming pg(y) to be known for yn < xpy, we can regard these as |N| linear
equations in the |N| unknowns py(x). Note that in matrix form, this gives a
system of equations Av = 0, where (by PS) A will be an |N| x |N| matrix
with positive entries off the diagonal and negative entries on the diagonal. The
coefficients in A depend only on the py(y) for yy < xx hence by induction they
agree with the coefficients we would get from the w-proportional method. Thus
the system Av = 0 has a solution u with all positive entries corresponding to the
pi(x) for the w-proportional method. From the Lemma below it follows that
the only solutions are multiples of u. However we have the further equation

>~ pi(x) = 1. Thus we see that the w-proportional method gives the unique set
keEN
of probabilities satisfying these equations. Hence our method agrees with the

w-proportional method for a claim of x and the induction proof is complete.

7. Lemma.

Suppose A is an n X n matrix with positive entries off the diagonal and
negative entries on the diagonal and suppose the system Aw = 0 has a solution
u with all entries positive. Then the only solutions to Aw = 0 are multiples of
u.
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Proof. Suppose Aw = 0 and choose an index ¢ such that |w;/u;| is maximal.
Then the 7th equation in the system gives:

(—Aii)wi = ZAijwj

J#i

and similarly for u. Hence,

[Aiiwi| = | Y Aggwg| <A fwy] <7 Aijug fwi fui| = (= Ag)ui [wi /us| = |Aswi]
i i i

Here the first inequality is the triangle inequality, the second is maximality of
|w; /u;| and the last equality follows since u; > 0 and A;; < 0. Thus both
inequalities must actually be equalities. Thus all the w; have the same sign and
|w; /u;] is a constant, i.e. w is a multiple of u.
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