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Abstract

We apply bootstrap methodology to unit root tests for dependent panels with N
cross-sectional units and T time series observations. More specifically, we let each
panel be driven by a general linear process which may be different across cross-
sectional units, and approximate it by a finite order autoregressive integrated pro-
cess of order increasing with T. As we allow the dependency among the innovations
generating the individual series, we construct our unit root tests from the estima-
tion of the system of the entire N cross-sectional units. The limit distributions of
the tests are derived by passing T to infinity, with N fixed. We then apply boot-
strap method to the approximated autoregressions to obtain critical values for the
panel unit root tests, and establish the asymptotic validity of such bootstrap panel
unit root tests under general conditions. The proposed bootstrap tests are indeed
quite general covering a wide class of panel models. They in particular allow for
very general dynamic structures which may vary across individual units, and more
importantly for the presence of arbitrary cross-sectional dependency. The finite
sample performance of the bootstrap tests is examined via simulations, and com-
pared to that of commonly used panel unit root tests. We find that our bootstrap
tests perform relatively well, especially when N is small.
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1. Introduction

Recently, nonstationary panels have drawn much attention in both theoretical and empirical re-
search, as a number of panel data sets covering relatively long time periods have become available.
Various statistics for testing unit roots and cointegration for panel models have been proposed, and
frequently used for testing growth convergence theories, purchasing power parity hypothesis and
for estimating long-run relationships among many macroeconomic and international financial series
including exchange rates and spot and future interest rates. Such panel data based tests appeared
attractive to many empirical researchers, since they offer alternatives to the tests based only on
individual time series observations that are known to have low discriminatory power. A number of
unit roots and cointegration tests have been developed for panel models by many authors. See Levin
and Lin (1992,1993), Quah (1994), Im, Pesaran and Shin (1997) and Maddala and Wu (1996) for
some of the panel unit root tests, and Pedroni (1996,1997) and McCoskey and Kao (1998) for the
panel cointegration tests available in the current literature. Banerjee (1999) gives a good survey on
the recent developments in the econometric analysis of panel data whose time series component is
nonstationary.?

Since the work by Levin and Lin (1992), a number of unit root tests for panel data have been
proposed. Levin and Lin (1992,1993) consider unit root tests for homogeneous panels, which are
simply the usual t-statistics constructed from the pooled estimator with some appropriate modifi-
cations. Such unit root tests for homogeneous panels can therefore be represented as a simple sum
taken over ¢ = 1,...,N and ¢t = 1,...,T. They show under cross-sectional independency that the
sequential limit of the standard t¢-statistics for testing the unit root is the standard normal distri-
bution.? For heterogeneous panels, the unit root test can no longer be represented as a simple sum
since the pooled estimator is inconsistent for such heterogeneous panels as shown in Pesaran and
Smith (1995). Consequently the second stage N-asymptotics in the above sequential asymptotics
does not work here. Im, Pesaran and Shin (1997) look at the heterogeneous panels and propose unit
root tests which are based on the average of the independent individual unit root tests, ¢-statistics
and LM statistics, computed from each individual unit. They show that their tests also converge
to the standard normal distribution upon taking sequential limits. Though they allow for the het-
erogeneity, their limit theory is still based on the cross-sectional independency, which can be quite
a restrictive assumption for most of the economic panel data we encounter.

The tests suggested by Levin and Lin (1993) and Im, Pesaran and Shin (1997) are not valid in the
presence of cross-correlations among the cross-sectional units. The limit distributions of their tests
are no longer valid and unknown when the independency assumption is violated. Indeed, Maddala
and Wu (1996) show through simulations that their tests have substantial size distortions when used
for cross-sectionally dependent panels. As a way to deal with such inferential difficulty in panels
with cross-correlations, they suggest to bootstrap the panel unit root tests, such as those proposed
by Levin and Lin (1993), Im, Pesaran and Shin (1997) and Fisher (1933), for cross-sectionally
dependent panels. They show through simulations that the bootstrap versions of such tests perform
much better, but do not provide the validity of using bootstrap methodology.

In this paper, we apply bootstrap methodology to unit root tests for cross-sectionally dependent
panels. More specifically, we let each panel be driven by a general linear process which may differ

2Stationary panels have a much longer history and have been intensely investigated by many researchers. The
readers are referred to the books by Hsiao (1986), Matyas and Sevestre (1996) and Baltagi (1995) for the literature
on the econometric analysis of panel data.

3The sequential limit is taken by first passing T to infinity with IV fixed and subsequently let IV tend to infinity.
Regression limit theory for nonstationary panel data is developed rigorously by Phillips and Moon (1999). They show
that the limit of the double indexed processes may depend on the way IN and T tend to infinity. They formally
develop the asymptotics of sequential limit, diagonal path limit (N and T tend to infinity at a controlled rate of the
type T = T'(N)) and joint limits (N and T tend to infinity simultaneously without any restrictions imposed on the
divergence rate). Their limit thoery, however, assumes cross-sectional independence.



across cross-sectional units, and approximate it by a finite order autoregressive integrated process
of order increasing with 7. As we allow the dependency among the innovations generating the
individual series, we construct our unit root tests from the estimation of the system consisting of
the entire N cross-sectional units. The limit distributions of the tests are derived by passing T to
infinity, with N fixed. We then apply the bootstrap method to the approximated autoregressions to
obtain the critical values for the panel unit root tests based on the original sample, and establish
the asymptotic validity of such bootstrap panel unit root tests under general conditions.

The rest of the paper is organized as follows. Section 2 introduces the unit root tests for cross-
sectionally dependent panels based on the original sample, and constructs the bootstrap tests by
applying the sieve bootstrap methodology to the sample tests. Also discussed in Section 2 are
the practical issues arising from the implementation of the sieve bootstrap methodology and the
extension of our method to models with deterministic trends. Section 3 derives the limit theories
for the asymptotic tests and establishes asymptotic validity of the sieve bootstrap unit root tests.
In Section 4, we conduct simulations to investigate finite sample performance of the bootstrap unit
root tests. Section 5 concludes, and mathematical proofs are provided in an Appendix.

2. Unit Root Tests for Dependent Panels

We consider a panel model generated as the following first order autoregressive regression:
Ayit:aiyi7t_1+uit, 1=1,...,N; t=1,...,T. (1)

As usual, the index i denotes individual cross-sectional units, such as individuals, households, in-
dustries or countries, and the index ¢ denotes time periods. We are interested in testing the unit
root null hypothesis, «; = 0 for all y;; given as in (1), against the alternative, a; < 0 for some
Yit, t = 1,...,N. Thus, the null implies that all y;;’s have unit roots, and is rejected if any one of
yit’s is stationary with «; < 0. The rejection of the null therefore does not imply that the entire
panel is stationary. The initial values (y10,...,¥~0) Of (y1t,...,y~t) do not affect our subsequent
asymptotic analysis as long as they are stochastically bounded, and therefore we set them at zero
for expositional brevity.
It is assumed that the error term (u;) in the model (1) is given by a general linear process
specified as
wit = mi(L)ei (2)

where L is the usual lag operator and m;(z) = Yo, mi,2", for i = 1,..., N. Note that we let m;(z)
vary across 7, thereby allowing heterogeneity in individual serial correlation structures. We also allow
for the cross-sectional dependency through the cross-correlation of the innovations e+, it = 1,..., N
that generate the errors u;. To define the cross-sectional dependency more explicitly, we define the
time series innovation (e¢)7_; by

et = (€1t .- -r6nt) (3)

and denote by | -| the Euclidean norm: for a vector z = (z;), |z> = Y, 27, and for a matrix
A = (ai5), Al = El ; a%j. For the development of the asymptotics for the sample statistics and the
bootstrapped tests, we assume

Assumption 1 Let (g;) be a sequence of iid random variables such that Ee; = 0, Eeie} = ¥ and
Elet|” < oo for some r > 4.

Assumption 2 Let m;(z) # 0 for all |z| < 1, and > .o |k|*|mik] < oo for some s > 1, for all
i=1,... N.



Under Assumptions 1 and 2, we may write the linear process given in (2) as an infinite order
autoregressive (AR) process a;(L)u; = €44 with a;(z) =1- 12, i k2", and approximate (u;;) by
a finite order AR process

_ pi
Uit = Qi1 U1+ + Qip Uip—p; + Ejf (4)

where e} = ¢;; + Z,;";pi +1 @ kUi The error in approximating (u;;) by a finite order AR process
can be made negligible if we increase p; with T. See Chang and Park (2001) for details. For the
order p; in the AR approximation (4), we assume

Assumption 3 Let p; — oo and p; = o((T/logT)/?) as T — oo, for alli = 1,..., N.

Some of the limit theories in the paper can be obtained under weaker conditions. In particular, the
iid assumption in Assumption 1 is made to make the usual bootstrap procedure meaningful. All our
asymptotics here go through for more general models with martingale difference innovations. See
Chang and Park (2001). Assumption 3 is sufficient to establish the consistency of our subsequent
bootstrap tests in the weak form, i.e., the convergence of conditional bootstrap distributions in
probability. To establish the strong consistency or the a.s. convergence of conditional bootstrap
distributions, we need to assume that p;/n(*/79)+% — oo with some § > 0 forall i =1,..., N.* The
reader is referred to Chang and Park (1999) for further details.
Using the AR approximation of (u;) given in (4), we write the model (1) as

Pi
Ayie = aiyi—1 + Z ik AYi -k + €3 (5)
k=1

since Ay;; = u; under the null hypothesis. This can be seen as an autoregression of Ay;; augmented
by yit—1. Our unit root tests will be based on the above approximated autoregression.> For prac-
tical implementations, we may choose p;’s using the usual order selection criteria such as Schwartz
information criterion (BIC) or Akaike information criterion (AIC).6 The order selection can be based
either on the regression (5) with no restriction on «a;’s, or on the approximated AR regression in (4)
where «;’s are restricted to be zero. This will not affect our subsequent limit theory.

The augmented autoregression (5) can be written in the following matrix form by taking the
individual units, with all their 7" observations, one after another, viz.

Ayl y[71 0 a1 lel 0 fl 5?1
: = : N i S Bl B
Ayn 0 Yen ) \On 0 XV ) O\ BRY er”
or more compactly
Ay =Yia+ XpBy +ep (6)
where for all i = 1,..., N, yei = (Yj0s-- - Yir—1)s BF = (@ip,. .., qip,) and XP* = (aff, ... z};)

with Clﬁftll = (Ayi,t—la N Ayi,t—pi)-
We now present our panel unit root tests based on the original sample, and subsequently construct
their bootstrap versions later in this section. Their limit theories will be derived in the next section.

4However, the presence of this lower bound for p;’s would prelude using an information criterion to select the order
for the approximating AR.

50ur regression (5) here may be viewed as an extension of the unit root regression considered in Said and Dickey
(1984) to the panel models. However, our assumption on the AR order p; is substantially weaker than the one used
by Said and Dickey (1984), due to the result in Chang and Park (2001).

6As for the choice among the selection criteria, BIC might be preferred if (u;;) is believed to be generated by a
finite autoregression, since it yields a consistent estimator for p;. If not, AIC may be a better choice, since it leads
to an asymptotically efficient choice for the optimal order of some projected infinite order autoregressive process. See
Chang and Park (1999) for more discussions on this issue.



2.1 Panel Unit Root Tests

For testing the null hypothesis of the unit roots in y; = (y1¢, - - -, y~t)’ generated by (1) and (2), we
first consider the tests based on the system GLS and OLS estimation of the augmented autoregression
(6). The F-type test based on the feasible system GLS estimator G, of a in (6) for testing the null
a = 0 is constructed as

For = g (var(der)) ™ dar = Ag Bop Acr (7)

where d&qr = B;lAqr,
- - ~ -1 -
Agr = V]E @ L), - V(S 0 )X, (XI;,(E*1 ® IT)Xp) XS @ IL)e,
- ~ - -1 ~
Ber = Y{E" 0 L)Y, - (57 o L)X, (X7 o L)X,) X587 @ L)Y,

and ¥ is a consistent estimator of the covariance matrix ¥. The limit distribution for the test Fir
is easily derived from the asymptotic behaviors of the components A and Bgr constituting Fgr,
and is given in Theorem A.1 in the next section.

On the other hand, the system OLS estimator of a in (6) is given by dor = Byl Aor, and the
OLS-based F-type test for testing a = 0 is defined similarly as

For = CA“IOT(Var(CA“OT))ildOT = AIOTM;olTAOT (8)

where
Aor = Y/ep — YIZIXP(X;XP)_IX;EP: Bor = Y/Yi - YEIXP(X;)XP)_lX;YZ:
Mror = Y/(S® Ir)Ye = Y/ Xp(X, Xp) ' X} (8@ L)Yy = Y/(S @ In) Xp(X, X,) T X, Ve
+ Y/ X (X, Xp) X (S @ 1) X, (X, X,) LX) Y.

The OLS estimator &, is less efficient than the GLS estimator &+ in our context. The OLS-based
test For in (8) is thus expected to be less powerful than the GLS-based test Fyur given in (7).
However, we observe in our simulations that F,, often performs better than Fy, in finite samples,

especially when N is large, i.e., when the dimension of the covariance matrix ¥ is large.
To construct a consistent estimator for the covariance matrix ¥, we may estimate the regression

Uit = dfflui,tfl + -+ df,lpl Ui t—p; + f::ftl 9)
by single-equation OLS for i = 1,..., N, with the unit root restriction o; =0 imposed. The estimates

dffk are uniformly close to a; , for 1 < k < p;, and (a; 1) become negligible for k£ > p; in the limit as
long as we let p; — 00.” As a result, we may consistently estimate variance and covariance estimates
of (i) using (£%;). This is shown in Park (1999, Lemma 3.1). Of course, one may obtain consistent
fitted residuals by estimating the unrestricted regession (5). This again will not affect our limit
theory. From (&%), form the time series residual vectors

éf:(éﬁ,... grmy’ (10)

» <Nt

for t =1,...,T. We then estimate ¥ by ¥ =T~ 3°/_ &V&}’. Notice that

S 1 —
Y= T ;esfsf' +0,(1) = e ;stsi + 0,(1) = Eeie} + 0,(1)

"Under Assumptions 1-3, we have maxi <g<p, &} — k| = O((log T/T)'/2) +o(p; ®) as., and Zzo:piJrl Q=
o(p;®)-



where the second equality follows from Lemma A1 (c) in Appendix. We use (£ ®I,) as an estimator
for the variance of the regression error in (6).

The F-type tests For and F,; considered here are two-tailed tests which reject the null a; =0
for all 4 when «; # 0 for some i. Hence, they reject the null of the unit roots not only against the
stationarity a; < 0 but also against the explosive cases with a; > 0 for some i. This will have a
negative effect on the powers of the tests.

The framework within which we may effectively deal with the aforementioned problem has been
recently developed by Andrews (1999).8 To deal with the problem, we may replace zeros for the
members of &g and dor which have positive values. This can be easily carried out by multiplying
element by element the estimators Gy = (Ggr1,---,0cr,n) and dor = (Gor,1,.-.,Qor,n)" respec-
tively by the N-dimensional indicator functions 1{&¢s < 0} and 1{&o, < 0}. Denote by .x the
element by element multiplication, and use this to modify the estimators ds, and éo, as follows

dGT,ll{dGT,l S 0} @OT,ll{dOT,l S 0}
Qgr * l{dGT < 0} = ,  GQop X l{dOT < 0}: :
dGT,N]-{dGT,N < 0} @OT,Nl{@OT,N < 0}

We now define new statistics, which we call K-statistics. From the modified GLS estimator
above, we define the GLS-based K -statistic K., as follows

Kor = (Gar # H{agr <0}) (var(der)) ™" (dar # 1{aer < 0})
= (AGT Sk 1{@GT < 0})’ Bc:% (AGT Sk 1{64GT < 0}) (11)

and similarly construct the OLS-based K -statistic K, from the modified OLS estimator as

Kor = (Gor # 1{aor <0}) (var(Gor)) ™! (Gor # 1{dor < 0})
(Aor * Haor <0V M1 (Aor * 1{aor < 0}). (12)

The K-statistics constructed as above are essentially one-sided tests, since they effectively eliminate
the probability of rejecting the null against the explosive alternatives. Therefore they are expected
to improve the power properties of the corresponding two-tailed F-type tests for testing of the unit
root null against the one-way stationary alternatives.

For the test of the unit root, we are testing a; = 0 for all i. Therefore, we are essentially looking
at a homogeneous panel, as far as testing of the null hypothesis is concerned. If the AR coefficients
a;’s in our original model (1) are homogeneous, i.e., a; = --- = ay = «, then the corresponding
augmented AR in matrix form is given by

Ay =yea+ X0, +¢p (13)

which is the same as the augmented AR in matrix form for the original heterogeneous model (6),
except that here we have an (NT'x1)-vector y, = (y; 1, .-, ¥p y)' in the place of the (NT x N)-matrix
Y, and the parameter a is now a scalar instead of an (N x 1)-vector.

It is natural to consider the t¢-statistics for testing the null hypothesis of the unit roots in the
homogeneous model (13), since the parameter a to be tested is now a scalar. Here we do not allow
for the heterogeneity of the AR coefficient, as in Levin and Lin (1992,1993). Obviously, the unit root
test based on the homogeneous panel (13) is valid, since the model is correctly specified under the
null hypothesis of the unit roots. The homogeneous panel, however, may not provide appropriate
modellings under the alternative hypothesis, and this may have an adverse effect on the power of

8Here we consider testing a; = 0 against a; < 0, and the parameter set is given by a; < 0 for each cross-sectional
unit ¢ = 1,...,IN. The value of a; under the null hypothesis is therefore on the boundary of the parameter set.



the tests. However, if the panel under consideration is believed to be homogeneous, we may use the
one-sided t-type tests, which have a clear advantage over the two-tailed F-type tests constructed
from the heterogeneous panels.

The OLS and GLS based t-statistics are constructed from the GLS and OLS estimators of the
scalar parameter « in the homogeneous augmented AR (13) and are given by

ter = a’GTbgil“/27 tor = UIOTM;);/Q (14)
where
Gcr 3/2(271 ® Ir)ep — yé(i’l ® L) X (X, (7 @ 1) X,) X, (271 ® Ir)ep
bor = y(E7' @ L)y — yp(E7' @ )X, (X (27 @ 1) X,
Qor = y}ep - szp(X{oXp)ilX{oep
Mor = yp(E®@ In)ye — 293X, (X, X,) ' X, (S @ L)y
+ y;ZXp(X;Xp)_lX;(i ® IT)XP(X;)XP)_lXII)Z/l-

N’
L
==
M
L
3
N’
<
o~

Our analysis can be easily extended to the models with heterogeneous fixed effects and individual
deterministic trends. Suppose the series (z;;) with a nonzero heterogeneous fixed effiect is given by

Zit = i + Yit (15)
or with an individual linear time trend by
Zip = i + 0it + Yt (16)

where the stochastic component (y;;) is generated as in our earlier model (1). Then for testing the
presence of the unit roots in (yi¢, ..., Yyxt) we may construct the panel unit root tests similarly from
the regression (5) defined with the fitted values, (yl) or (y%), of y; obtained from the preliminary
regressions (15) or (16) fori =1,...,N.

As we show in Section 3.1, the limit distributions of the panel unit root tests developed here
depend on various nuisance parameters that represent cross-correlations among the individual cross-
sectional units. Hence, the inference based directly on such tests are not possible. In the following
section, we now propose bootstrapping the tests developed here to deal with the nuisance parameter
problems in their limit distributions and to provide a valid basis for inference based on the panel
unit root tests for dependent panels.

2.2 Bootstrap Panel Unit Root Tests

In this section, we consider the sieve bootstraps for the various panel unit root tests, Fsr, For, Kor,
Koz, ter and tor considered in Section 2.1. Throughout the paper we use the conventional notation
* to signify the bootstrap samples, and use P* and E* to denote, respectively, the probability
and expectation conditional upon the realization of the original sample. While constructing the
bootstrapped tests, we also discuss various issues and problems arising in practical implementation
of the sieve bootstrap methodology.

To construct the bootstrapped tests, we first generate the bootstrap samples (¢F,), (u};) and
(y3). For the generation of (¢},), we need to make sure that the dependence structure among cross-
sectional units, ¢ = 1,..., N, is preserved. To do so, we generate the N-dimensional vector (¢}) =
(€54, -+, €%,)" by resampling from the centered residual vectors (£7) defined in (10) from the fitted
autoregression (9). That is, obtain (¢}) from the empirical distribution of (6 —T~1Y",_ &), t =



1,...,T. The bootstrap samples (¢}) constructed as such will, in particular, satisfy E*e} = 0 and
E*cier = 2.9

Next, we generate (u};) recursively from (¢7;) as

uj = dﬁ“f,tfl +--t df,l Ujt e T ER (17)

where (a},...,a7:, ) are the coefficient estimates from the fitted regression (9). Initialization of
(uy,) is unimportant for our subsequent theoretical development though it may play an important
role in finite samples.'® The coefficient estimates (&}, ...,&},,) used in (17) may be obtained from
estimating (9) by the Yule-Walker method instead of the OLS The two methods are asymptotically
equivalent. However, in small samples the Yule-Walker method may be preferred to the OLS, since
it always yields an invertible autoregression, thereby ensuring the stationarity of the process (u}).
See Brockwell and Davis (1991, Sections 8.1 and 8.2). However, the probability of having the
noninvertibility problem in the OLS estimation becomes negligible as the sample size increases.

Finally, obtain (y) by taking partial sums of (u},), viz., yj; = yjo + 22:1 u}, with some initial
value y%. Notice that the bootstrap samples (y};) are generated with the unit root imposed. The
samples generated according to the unrestricted regression (1) will not necessarily have the unit root
property, and this will make the subsequent bootstrap procedure inconsistent as shown in Basawa
et al (1991). The choice of the initial value y}, does not affect the asymptotics as long as it is
stochastically bounded. Therefore, we simply set it equal to zero for the subsequent analysis in this
section.

To construct the bootstrapped tests, we consider the following bootstrap version of the augmented
autoregression (5) which was used to construct the sample test statistics

pi

Ay = aiy;,t—l + Z ai,kAy;,t—k +eh (18)
k=1

and write this in matrix form as
Ay* =Y a+ X, B, +e" (19)

where the variables, y*, V", X and &*, are defined with the bootstrapped samples in the exactly
same manner as their original sample counterparts y, Y;, X, and ¢ given below (6).

We test for the unit root hypothesis a =0 in (19), using the bootstrap versions of the F-type
tests that are defined analogously as the sample F-type tests considered earlier in (7) and (8). The
bootstrap GLS and OLS based F-tests are constructed from the GLS and OLS estimators of a in
the bootstrap augmented AR regression (19), and are given explicitly as

= AlrBiz A, =AY M;ior Ay (20)
where the components, A%, B%,, A%, and M}, .., are defined analogously as their sample counter-
parts, Acr, Bgr, Aor and Mpor, given below (7) and (8). They are exactly the same except that
the bootstrap samples, Y;*, X and €*, are used in the places of their original sample counterparts,
Yy, Xp and €.

90f course, we may resample £},’s individually from the £7{’s for i = 1,...,N and t = 1,...,T. In this case,
preserving the original correlation structure among the cross- sectlona.l units needs more care. We basically need to pre-

whiten épl ’s before resampling, and then re-color the resamples to recover the correlation structure. More specifically,
g y
p“ 1/2

we first pre-whiten £;;’s by pre-multiplying n-

"'pz )

to &7 = (5},...,&%% ), for t = 1,...,T. Next, generate £},’s by
resampling from the pre whitened £77’s, and then re—color them by pre-multiplying 21/2 to ef = (ef;,--.,ene) tO
restore the original dependence structure.

10We may use the first p;-values of (u;) as the initial values of (u},). The bootstrap samples (u},) generated as
such, however, may not be stationary processes. Alternatively, we may generate a larger number, say I"+ M, of (u},)
and discard first M-values of (u},). This will ensure that (u},) become more stationary. In this case the initialization
becomes unimportant, and we may therefore simply choose zeros for the initial values.



We note that the bootstrap F-statistics Fj, and F, given in (20) also involve the covariance
matrix estimator ¥, which is defined below (10). The estimate ¥ is the population parameter for the
bootstrap samples (¢} ), which corresponds to ¥ for the original samples (¢;). We may of course use
the bootstrap estimate ¥*, say, for the construction of the statistics F,. and F}, for each bootstrap
iteration. The two versions of the bootstrap tests are asymptotically equivalent at least for the first
order asymptotics, and we use ¥ in the construction of the bootstrap tests for convenience.!!

The bootstrap K-statistics are constructed from the bootstrap samples in the analogous manner
in which the sample K-statistics are defined in (11) and (12). They are defined as

K& = (Abr # Hag, <0} Bir' (Af, # Hag, < 0}) (21)
K5y = (Aby # Hag, <01 Mz, (A5, x1{65, < 0}) (22)

where &, = Bi7 A%, and &}, = B57 1A} are the bootstrap counterparts to the GLS and OLS
estimators dgr and dor estimated from the sample regression (6).

The bootstrap t-statistics are also constructed in an analogous manner as we constructed the
sample t-statistics, g and tor, in Section 2.1. Thus, we consider the homogeneous panel of the
bootstrap samples, with a; = --- = @y = « imposed, and compute the ¢-statistics from the corre-

sponding bootstrap augemented AR, which is written in matrix form as
Ay* =yja+ X, B, + ¢ (23)

The variables appearing in the above regression are defined in the same way as in the augmented AR,
in matrix form for the bootstrap heterogeneous model (19), except that here we have an (NT X 1)-
vector y; = (y;'},---,y; y)" in the place of the (NT x N)-matrix Y;* and the parameter « is now a
scalar instead of an (N x 1)-vector.

The bootstrapped GLS and OLS based t-statistics are based on the GLS and OLS estimator of
a in the homogeneous augmented AR (23), and are given by

* x gr—l/2 s x —1/2
tor = a’GTbZ'T / v tor = a’OTMi*OT/ (24)
where af,, b%,, a5, and M, are constructed from the bootstrap samples y;, X and %, and

defined in the same manner as their sample counterparts, a¢r, ber, ¢or and M,or, given below (14).

We now outline how our bootstrap tests can be implemented in practice. For illustration, we
consider the boostrap test F}5,. To implement the test, we repeat the bootstrap sampling for the
given original sample and obtain ¢ (A) such that P* {F?,. < ¢%()\)} = A for any prescribed size level
A. The bootstrap test FJ%.. rejects the unit root null hypothesis if Fi,7 < ¢&(A). In Section 3.2 below,
it will be shown under appropriate conditions that the bootstrap panel unit root tests considered
here are asymptotically valid, i.e., they have asymptotic size A.

3. Statistical Theories

3.1 Limit Theories for Panel Unit Root Tests

It is well known that an invariance principle holds for a partial sum process of (g;) defined in (3)
under Assumption 1. That is,

e Et —d B (25)
\/T t=1

" The bootstrap tests based on the bootstrap estimate o= may be better for higher order asymptotics, since they
more closely mimic the sample statistics than the bootstrap tests based on the population parameter 3. The statistics
considered in the paper are, however, non-pivotal and therefore the higher order asymptotics are irrelevant here.




as T — oo, where B = (By,...,By)" is an N-dimensional Brownian motion with covariance matrix
¥, and [z] denotes the maximum integer which does not exceed .

For the development of our asymptotics, we may conveniently use the Beveridge-Nelson repre-
sentation for (u;) given in (2) as

wip = mi(1)eg + (Uip—1 — Ust) (26)

where @y = Yoo o Tik€it—k With T ) = E;’;,H_l m; ;. Under our condition in Assumption 2, we
have Y12 |7i k| < oo [see Phillips and Solo (1992)] and therefore (u;;) is well defined both in a.s.
and L" sense [see Brockwell and Davis (1991, Proposition 3.1.1)].

Under the unit root hypothesis a; =---=ay = 0, we may now write

Yir = mi(L)wie + (o — wir) (27)

where w;; = 22:1 eix- Consequently, (y;+) behaves asymptotically as the constant 7;(1) multiple of
(w;). Note that (@) is stochastically of smaller order of magnitude than (w;), and therefore will
not contribute to our limit theory.

Let 0;; and o denote, respectively, the (i, j)-elements of the covariance matrix ¥ and its inverse
Y7L, The limit theories for the F-type tests, Fs, and Fyr defined in (7) and (8), are given in

Theorem A.1 Under Assumptions 1 — 3, we have

(a) For =4 QIAG Q]_BéQAC (b) For —a QIAOQJT/}FOQAO

as T — oo, where

N ) 1 1
71'1(1)201.7/ BldBJ 71'1(1)/ BldBl
=1 0 0
Qag = : , Qap = ;
N ) 1 1
WN(l)ZgNJ/ BydB; WN(1)/ BydBy
=1 0 0
1 1
allm(l)?/ B} ale(1)7rN(1)/ BBy
0 0
QBg = :
1 1
O’N17TN(].)7T1(].)/ ByB; ... UNNWN(l)z/ B2
0 0
and
1 1
011’/T1(1)2/ B% 0’1N7T1(1)’/TN(].)/ BlBN
0 0
Quipo = : :
1 1
aamOm() [ BB o om0 [ B
0 0

We note that the limit theories provided in Theorem A.1 and all of our subsequent asymptotic results
are derived for non-random p;’s which increase with the sample size. In practice, however, we have
to estimate p; from the data using an order selection criteria such as AIC or BIC. The AIC (BIC)



rule selects p; which minimizes the quantity log 2 + 2p;/T (log 2 + p;log T /T). Following the lines
in Park (1999), we may indeed show that our limit theories, including the bootstrap consistency
results in the next section, continue to hold even for the estimated lag order p; via AIC or BIC, if
we modify our Assumption 3 as p; = o((T/log(T))'/?).

The limit distributions of the F, and F,, are nonstandard and depend heavily on the nuisance
parameters that define the cross-sectional dependency and the heterogeneous serial dependence.
Therefore, it is impossible to perform inference based directly on the tests Fyr and Fyr.

The limit distributions of the K-statistics can be easily obtained in a manner similar to that
used to derive the limit theories for the F'-type tests, and are given in

Corollary A.1 Under Assumptions 1 — 3, we have

(a) Ker —a (Qag * H{QE.Que <N QBL(Qas * 1{QB.Qa, <0})
(b) Kor —a (QAO * 1{Q§é Qao < 0})/@];[11?0 (QAO * 1{Q§é Qao < 0})

1)2/0113% ﬂl(l)wN(l)/OlBlBN

mx (1) (1) /01 ByB, ... 7rN(1)2/01 B2

as T — oo, where

and the terms Qa., @By, @4, and Qar,, are defined in Theroem A.1.

As can be seen clearly from the above Corollary, the limit distributions of the K-tests are also
nonstandard and depend heavily on the nuisance parameters.
In the following theorem we present the limit theories for the t5, and to7 tests.

Theorem A.2 Under Assumptions 1 — 3, we have

(a) ter —a QaGQb L2 (b) tor —+a QGOQX/IZ)Z

as T — oo, where

Qu :z::i: ’J/ BidBj, Qo zgzaij/o B;B;

and

N 1 N N 1
Qao = Zm/ BidB;, Qo = Zzaijﬂ'iﬂ'j/ B; B
i=1 0 P 0

The limit processes Qo , Qb s Qoo @M, appearing in the limit distributions of {¢, and ¢, are the
sums of the individual elements in the corresponding limit processes Qa., @By, @4, and Qrrpp
defined in Theorem A.1 for the limit distributions of the tests F, and F, that are developed for the
heterogenous panels.'? The limit distributions of the t-statistics t, and ¢, are also nonstandard

12Levin and Lin (1992,1993) considers ¢-statistics for homogeneous panels under cross-sectional independency. Con-
sequently, they can apply IV-asymptotics after the limit as T’ tends to infinity is taken, and derive the limit distribution
that is the standard normal. Their theory, however, does not extend to our statistics, since we allow for dependency
across cross-sectional units.
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and suffer from nuisance parameter dependency, as in the cases with the F-tests and K-statistics.
Hence it is not possible to use these statistics for inference as they stand.

The limit theories for the tests given in Theorem A.1, Corollary A.1 and Theorem A.2 extend
easily to the models with heterogeneous fixed effects and individual time trends such as those given
in (15) and (16), and are given similarly with the following demeaned and detrended Brownian
motions

B!(s) = B;(s) — /0 B;(t)dt
and

BI(s) = Bi(s) + (65 — 4) /01 B;(t)dt — (125 — 6) /01 tB;(t)dt

in the places of the Brownian motions B;(s) fori =1,..., N.

3.2 Limit Theories for Bootstrap Panel Unit Root Tests

Here, we establish the consistency of the bootstrapped tests introduced earlier in Section 2.2 and
show the asymptotic validity of the tests based on bootstrapped critical values. We will use the
symbol o;(l) to signify the bootstrap convergence in probability. For a sequence of bootstrapped
random variables Z7, for instance, Z; = o5(1) in P imply that

P*{|Z:| >0} >0 in P

for any 0 > 0, as T — oco. Similarly, we will use the symbol O (1) to denote the bootstrap version of
the boundedness in probability. Needless to say, the definitions of oy, (1) and O, (1) naturally extend
to oj(cr) and Oy (cy) for some nonconstant numerical sequence (cr).

To develop our bootstrap asymptotics, it is convenient to obtain the Beveridge-Nelson represen-

*

tations for the bootstrapped series (u},) and (y};) similar to those for (u;) and (y;) given in (26)

and (27) in the previous section. Let a;(1) =1— Y% | a7 Then it is indeed easy to get
1 pi pz . dpz
* * J=FK 7%,] * * ~ * — % — %
o E L=k 0 —u = 7 (1)e R 7
Ust &z(l) Eit + Pt ONZl(l) (uz,tfk uz,tkarl) ,/TZ( )61t + (’u‘z,tfl uzt)

where 7;(1) = 1/&;(1) and @, = 7;(1) Y0, (3075, &15)uf 4_p 41, and therefore,
t
Yir = Zu:k = mi(Dwyy, + (wp — ujy)
k=1

where w}, = 22:1 €f,- From this we may easily derive the limit theories given in the following
lemma and Lemma B2 in Appendix that are required for the derivation of the limit distributions
for our sieve bootstrap panel unit root tests.

Lemma B1 Under Assumptions 1 — 3, we have
1 « 1
C= > yriaeg = il1) T D wiiigj, + op(1)
t=1 t=1

R o R
(b) T2 Z Yii—1Yji—1 = mi(1)7;(1) T2 Z w; Wi g +0,(1)
t=1 t=1
We introduce the notation —4+ for bootstrap asymptotics. For a sequence of bootstrapped
statistic (Z2%), we write
Z7 —q Z as.
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if the conditional distribution of (ZX) weakly converges to that of Z a.s. as T — oo. Here it
is assumed that the limiting random variable Z has a distribution which does not depend on the
original sample realization. We now present the limit theories for the bootstrap tests. The limit
theories for the bootstrapped F-tests (Fi,, Fy,), K-tests (K., K5,) and t-tests (t%,.,t5,.) are given
respectively in Theorem B.1, Corollary B.1 and Theorem B.2 below.

Theorem B.1 Under Assumptions 1 — 3, we have as T — o0,

(a) For —a- QU QprQac  (b) For —ar Quy Qo @ao
in P, where Qa., @By, @4, and Qs are defined in Theorem A.1.

Corollary B.1 Under Assumptions 1 — 3, we have as T — oo,

(a) Kzp —ae (Qag * {Qp,Qa <01)'Qpg (Qag # 1{Qp.Qa, < 0})
(b) K5, —ar (Qao * H{Qp. Qap <01 Qpfh (Qap x1{QpL Qa, <0})

in P, where Qa., @By, QAao, @Mpo and @ p, are defined in Theorem A.1 and Corollary A.1.

Theorem B.2 Under Assumptions 1 — 3, we have as T — o0,

(@) the 20 Qua@iy’” (0) 155 —a- Quo Q)
in P, where Qg , Qbg, Quo and Qar,, are defined in Theorem A.2.
The results in Theorem B.1, Corollary B.1 and Theorem B.2 show that the bootstrap tests, (F%

GT?
Er), (K:.,K%.), and (t%,,t5,) have the same limit distributions as their sample counterparts,
(For For), (Kgr,Kor) and (t%,,t5,), which are given respectively in Theorem A.1, Corollary A.1
and Theorem A.2 in Section 3.1. This establishes the asymptotic validity of the boostrap tests Fy_.,
Fr., K., K5, th, and t,.. We refer to Chang and Park (1999) for a detailed discussion on the
issue of asymptotic validity of bootstrap tests in general.

Our bootstrap theories developed here easily extend to the panel unit root tests in models with
heterogeneous fixed effects and individual time trends, such as those introduced in (15) and (16). It
is straightforward to establish the bootstrap consistency for the tests constructed from the demeaned
and detrended series, using the results obtained in this section. The bootstrap tests are therefore
valid and applicable also for the models with heterogeneous fixed effects and individual deterministic

trends.

4. Simulations

We conduct a set of simulations to investigate the finite sample performance of the bootstrap panel
unit root tests, Fy., F5,., K}, K}, tt, and t} ., proposed in the paper. For the simulations, we
consider two classes of models: (M) the models with heterogeneous fixed effects only and (T) the
models with individual time trends as well as fixed effects. More specifically, we consider the models
given in (15) and (16) with the series (y;) defined by (1). For each class of models, errors (u;) in

(1) are generated as either AR(1) or MA(1) processes, viz.,
(AR) uiy = pithig—1 + e (MA) uy =4 +0i€40-1

The innovations e; = (€14,...,Enxt) that generate uy = (ui,...,unNt)’ are drawn from an N-
dimensional multivariate normal distribution with mean zero and covariance matrix X, which will
be specified below. The simulation model for case (MA) is generated from an MA(1) process (u;),

12



which can be represented as an infinite order AR process. Using the lag order p; selected by the
modified AIC rule suggested by Ng and Perron (2000, 2001) with the maximum lag order 10'2,
we approximate (ug) by an AR(p;) process as in (9). The approximated autoregression is then
estimated by the OLS method.!*

The AR and MA coefficients, p;’s and 6;’s, used in the generation of the errors (u;) are drawn
randomly from the uniform distribution. The location and range of the distribution determine
the characteristics of the data generating process. The location determines the amount of serial
correlation allowed in the individual series, while the range prescribes the degree of heterogeneity
allowed in the panel. It turns out that both the location and range of the distribution critically
affect the finite sample performances of the tests considered in the paper. For our simulations, we
consider the following six cases:

DGP Cases Parameters
AR Al pi ~ U(-0.8,0.8)

A2 pi ~U(0.2,0.4)

A3 Al with independent &;;’s
MA M1 6; ~U(-0.8,-0.4)

M2 6; ~U(—0.4,0.4)

M3 6; ~U(0.4,0.8)

Cases (Al) and (A2) are considered to allow respectively for wide and narrow ranges for the AR
errors. Case (Al) allows the errors to be quite heterogeneous, and thus the t* statistics designed
for homogeneous panels are expected to perform poorly in this case. Case (A2) represents panels
with errors which are more homogeneous.!® Case (A3) is considered to see how the tests perform
when individual dynamics are generated by independent innovations. For the models driven by
MA errors, we looked at three different cases. Case (M1) is considered to see how the tests behave
in the presence of large negative MA roots. Many previous simulations for the univariate model
show that the unit root tests yield severe over-rejections in this case. Case (M2) is considered to
examine the performances of the tests when mild serial correlations are allowed. We do not expect
significant size distortsions in this case. Case (M3) is included to see how the tests perform in the
other extreme where the errors have large MA coefficients.'® All of the above specifications for the
serial correlations are used for both classes of models (M) and (T).

The parameter values for the (N xN) covariance matrix ¥ = (o;;) are also randomly drawn, but
with particular attention. To ensure that ¥ is a symmetric positive definite matrix and to avoid the
near singularity problem, we generate X via following steps:

(1) Generate an (N x N) matrix U from Uniform[0,1].
(2) Construct from U an orthogonal matrix H = U(U'U)~"/2.

13This procedure was suggested by an Associate Editor to whom I am very grateful. Indeed the use of this selection
rule improved our simulation results relative to the previous results appeared in an earlier version of this paper, which
are based upon the usual AIC rule.

14The Yule-Walker method is not used here due to its finite sample bias problem, which may outweigh the benefits
of ensuring stationarity.

15Case (A2) is considered mainly to relate to previous simulation studies for panel unit root tests. See Maddala
and Wu (1996) and Im, Pesaran and Shin (1997). It seems, however, that the location of distribution in AR models
does not affect the performances of the tests significantly.

16We also tried the case where the MA coefficient is drawn from the uniform distribution with a wider range,
Uniform(—0.8,0.8). However, the results were not informative since they were mixture of quite drastically different
results obtained from different locations chosen randomly from such a wide range covering both extremely large
negative and positive MA roots.
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(3) Generate a set of N eigen values, A1,...,Ay. Let Ay=r >0 and Ay=1and draw Ay,...,A\xy_1
from Uniform[r,1].

(4) Form a diagonal matrix A with (A1,...,A\y) on the diagonal.

(5) Construct the covariance matrix ¥ as a spectral representation ¥ = HAH'.

The covariance matrix constructed this way will surely be symmetric and nonsingular with eigen-
values taking values from r to 1. We set the maximum eigenvalue at 1 since the scale does not
matter. The ratio of the minimum eigenvalue to the maximum is therefore determined by the same
parameter r. The covariance matrix becomes singular as r tends to zero, and becomes spherical as
r approaches to 1. For the simulations, we set r at 7 = 0.1.17

For the test of the unit root hypothesis, we set a; = 0 for all # = 1,..., N, and investigate
the finite sample sizes in relation to the corresponding nominal test sizes. To examine the rejec-
tion probabilities of the tests under the alternative of stationarity, we generate a;’s randomly from
Uniform(—0.8,0). The model is thus heterogenous under the alternative. The finite sample perfor-
mance of the bootstrap tests are compared with that of the ¢-bar statistic by Im, Pesaran and Shin
(1997), which is based on the average of the individual ¢-statistics computed from the sample ADF
regressions (5) with mean and variance modifications. More explicitly, the ¢t-bar statistic is defined

as
‘/N(tN -Nt Zivzl E(tiapia Q1,5 7ai7pi))

\/N_l E?:l Var(tiapiy QU 1yeney ai,pi)

where t; is the t-statistic for testing a; = 0 for the i-th sample ADF regression (5), and ¢y =
N1 ti. The values of the expectation and variance, E(t;) and var(t;), for each individ-
ual ¢; depend on T, the lag order p; and the coeflicients on the lagged differences «;;’s, and
are computed via simulations from independent normal samples assuming o;1 = -+ = o, =
0. Table 2 in Im, Pesaran and Shin (1997) tabulates the values of E(t;) and var(¢;) for T =
5,10, 15,20, 25, 30, 40, 50, 60, 70, 100 and for p; = 1,...,8. When the AR order p; chosen by the
selection rule is greater than 8, we replace it by 8 for the construction of the ¢-bar test since the
mean and variance modifications are available only for p;’s upto 8. However, for the construction of
our bootstrap tests, we use the original order selected by the rule.

The panels with the cross-sectional dimensions N = 5,10 and the time series dimension 7= 100
are considered for the 5% size test. Since we are using random parameter values, we simulate 20
times for each case and report the ranges of the finite sample performances of the tests. Each
simulation run is carried out with 1,000 simulation iterations, each of which uses bootstrap critical
values computed from 500 bootstrap repetitions. The simulation results for the ¢-bar statistic and
our bootstrap tests Fix., Fr., K%, K5, t5, and t%. for the models (M) with heterogeneous fixed
effects are reported in Tables MS.A1-MP.M3. Tables MS.A1(A2,A3) and MP.A1(A2,A3) report,
respectively, the finite sample sizes and powers of the tests for case A1(A2,A3) with the AR errors
generated by the DGP defined with the parameters given in A1(A2,A3). Tables MS.M1(M2,M3)
and MP.M1(M2,M3) report the finite sample sizes and powers for case M1(M2,M3) with the MA
errors generated by the DGP M1(M2,M3). Similarly, Tables TS.A1-TP.M3 report the finite sample
sizes and powers of the tests for the models (T) with individual time trends. For each statistic, we
report the minimum, mean, median and maximum of the rejection probabilities under the null and
under the alternative hypotheses.

In general, the t-bar test suffers from serious size distortions for both models (M) and (T)
and for all specifications of serial correlations considered with cross-sectional dependency. The size
distortions in the models driven by MA errors or with time trends are much more severe than those

t-bar =

70ur bootstrap tests do not seem to depend on the the value of r, but the t-bar statistic does. Though we do
not report the details, we observe from a set of simulations that the ¢-bar tends to have higher rejection probabilities
when r is close to 0, relative to the case where ¥ is nearly spherical with r = 0.99.
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in the models driven by AR errors or with fixed effects only.'® In particular, it suffers from huge
upward size distortions for case (M1) with large negative MA roots. As can be seen from Table
MS.M1 for the models (M) with heterogeneous fixed effects, the average size of the t-bar tests for
the 5% test is 45% for N=5, and increases to 66% for the larger N=10. For cases (M2) and (M3),
the t-bar continues to over-reject for both N=5,10, though the magnitude of the distortions is much
smaller than in case (M1). See Tables MS.M2 and MS.M3. The ¢-bar has similar patterns of size
distortions for the models (T) with time trends. However, the degree of distortions are noticeably
magnified in this case, especially for the cases generated by MA errors. For instance, as can be
seen from Table TS.M1, the upward distortion in case (M1) is now enormous, and it gets worse as
N increases. For the 5% test, the average size of the t-bar test is 76% for the smaller N=5 and
increases to 94% when the larger N = 10 is used.

On the other hand, the finite sample sizes of the bootstrap tests are overall quite close to the
nominal test sizes in most of the cases. For the cases with AR errors, all bootstrap tests have very
good size properties for both classes of models (M) and (T), as can be seen from Tables MS.A1(A2)
and TS.A1(A2). Our bootstrap tests also have reasonably good sizes for the cases with MA errors,
except for case (M1). In this case, all bootstrap tests also suffer from upward size distortions;
however, the degree of the distortions in our bootstrap tests is not comparable to that of the ¢-bar
test. Ours is much less severe than theirs.!? See Tables MS.M1 and TS.M1.

We now turn to finite sample powers of the tests. In general, it seems that our bootstrap tests
perform satisfactorily in all cases we consider in the paper. It is, however, not easy to directly
compare power performances of our tests with those of the t-bar using the computed rejection
probabilities, since in many cases the t-bar test has significant size distortions. Nonetheless, we can
make straightforward comparisons in some cases. As can be seen from Tables MS.A and MP.A for
cases Al and A2 for the models with fixed effects, the GLS-based bootstrap tests, F;, and K},
perform clearly better than the ¢-bar test even in the presence of the upward size distortions in the
t-bar test. The bootstrap tests appear to perform quite well relative to the t-bar test also for all
other cases, once we take into account the upward size distortions in the t-bar test. Our bootstrap
tests F* and K* seem to yield better powers than the t-bar test in most of the cases. There are,
however, cases where the t* tests appear less powerful than the t-bar. The performance of the t*
tests varies with the degree of heterogeneity allowed in the model. The finite sample powers of
all tests are lower for the models (T) with time trends, compared with the models (M) with fixed
effects only. We expect that the efficient GLS-detrending suggested by Elliot, Rothenberg and Stock
(1996) improves the power properties of our bootstrap tests in both models. However, it is not used
here to give a fair ground to the ¢-bar test, whose critical values are available only for the usual
OLS-detrending.

We now discuss the relative performances among our bootstrap tests. The GLS-based tests
generally perform better than their OLS counterparts in terms of both sizes and powers. The GLS-
based tests F. and K}, have better sizes for all cases except (M1) and are more powerful than
their OLS counterparts F%.. and K. This is even more evident for the models (T) with individual
time trends. For the t* tests, however, this is not always the case. The t’, seems to have better
sizes than ¢}, in most of the cases, but it is more powerful than ¢}, only for the smaller N. See
the discussion on the t* test below. Overall, the F* and K* tests perform better than the t* test in
terms of both sizes and powers, except for the cases described below.

18In the models with independent AR errors as in case A3, the t-bar performs quite well as expected. However,
even in such cases with cross-sectional independence, the t-bar test starts to over-reject as we introduce time trends
and the upward distortions become more obvious as IV increases.

19The poor size performances of the tests in case (M1) for both models with fixed effects and time trends go in line
with the well known size problems of the univariate unit root tests in models with large negative MA roots. It is also
observed that bootstrap tests reduce, though not completely, the size distortions in such cases. See Chang and Park
(1999).
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The t-type tests are one-sided tests constructed for homogenous panels. Hence, for our simulation
models with the alternatives drawn heterogeneously for each individual unit, it is well expected that
the t* tests will be less powerful than the F* and K* tests that are designed for heterogeneous
panels. Indeed, when the models allow substantial amount of heterogeneity, as in cases (Al) and
(A3), the t* tests have lower power and exhibit larger variability. However, when the models are
modestly heterogeneous, as in case (A2), the t* tests become much less variable and more powerful,
almost comparable to the F* and K* tests. For the cases with MA errors, the models considered
here are not drastically heterogeneous, and consequently the powers of the t* tests are reasonably
good. We also note that the OLS based t-statistic ¢}, is more powerful than its GLS couterpart ¢,
when the larger N=10 is used, which is not observed for the F* and K™* tests.

The K-statistics are proposed as an alternative to the two-sided F-type test to come up with
more powerful tests for the unit roots against the one-way alternative of stationarity. The simulation
results in Tables MP and TP, however, show that the improvement the K-statistics make over
the F-type tests are insignificant. The finite sample distributions of é&cr and &or, upon which
the modifications for the K -statistics are made, are indeed skewed to the left so much that the
modifications do not have actual effect. For better results, we thus need to correct the biases in
the distributions of &gz and éo before applying the modifications given in the equation preceding
(11). This can be implemented in practice by carrying out a nested bootstrap, the first step of
which involves the bootstrap corrections for the biases in &gz and &or. We do not pursue this in
the present paper due to the computation time, but will report in a future work.

5. Conclusion

There has been much recent empirical and theoretical econometric work on models with nonstation-
ary panel data. In particular, much attention has been paid to the development and implementation
of the panel unit root tests which have been used frequently to test for various covergence theories,
such as growth covergence theories and purchasing power parity hypothesis. A variety of tests have
been proposed, including the tests proposed by Levin and Lin (1993) and Im, Pesaran and Shin
(1997) that appear to be most commonly used. All the existing tests, however, assume the inde-
pendence across cross-sectional units, which is quite restrictive for most of economic panel data we
encounter. Cross-sectional dependency seems indeed quite apparent for most of interesting panel
data.

In the paper, we investigate various unit root tests for panel models which explicitly allow for the
cross-correlation across cross-sectional units as well as heterogeneous serial dependence. The limit
theories for the panel unit root tests are derived by passing the number of time series observations
T to infinity with the number of cross-sectional units N fixed. As expected the limit distributions of
the tests are nonstandard and depend heavily on the nuisance parameters, rendering the standard
inferential procedure invalid. To overcome the inferential difficulty of the panel unit root tests in
the presence of cross-sectional dependency, we propose to use the bootstrap method. Limit theories
for the bootstrap tests are developed, and in particular their asymptotic validity is established by
proving the consistency of the boostrap tests. The simulations show that the bootstrap panel unit
root tests perform well in finite samples relative to the ¢-bar statistic by Im, Pesaran and Shin
(1997).

6. Appendix: Mathematical Proofs

The following lemmas provide asymptotic results for the sample moments appearing in the sample
test statistics Far, For, Kar, Kor, tar and tor defined in (7), (8), (11), (12) and (14).
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Lemma A1l Under Assumptions 1 — 3, we have

1 = j 1 . ..
(a) T Zyi,t—IE% =m(1) T E w165t +op(1), foralli,j =1,...,N
t=1 t=1

1 « 1 .
(b) F Zyi’t_lyj’t_l = Fi(l)ﬂ'j(l) F Zwi,t_le7t_1 + Op(l), for all t,j=1,...,N

t=1 t=1
1 T T
DI CATIMERTAL
t=1 t=1

Proof of Lemma Al

Part (a) The stated results follow immediately if we apply the results in Lemma 3.1 (a) of Chang
and Park (2001) to each (4,j) pair, for i,j =1,...,N.

Part (b) The stated result follows directly from Phillips and Solo (1992).
Part (¢) Let Qr =T '),  efel’ —T 137  ee}. Then for each (i, j)-element of ), we have

T

1 ~ _
QTJ;‘:;Z( €5t — €it) ;t+ Z&t (5 —ejt) = 0p(p;°) + 0, (] °)

t=1

due to Lemma 3.1 (c) in Chang and Park (2001). Now the stated result is immediate.

Lemma A2 Under Assumptions 1 — 3, we have
-1
(a) ( let " ) =0p(1), forall p;andi=1,...,N

3 1/2 ..
ftyj,tA :Op(Tpi/ ), foralli,j=1,...,N

2 :wzt E]t

Proof of Lemma A2 The stated result in Part (a) follows directly from the application of the
result in Lemma 3.2 (a) of Chang and Park (2001) for each i = 1,..., N, and those in Parts (b) and
(c) are easily obtained using the results in Lemma 3.2 (b) and (c) of the aforementloned reference for
each (i, ) pair for 4,5 = 1,..., N, with some obvious modifications with respect to the heterogeneous
orders p;’s of the AR approximations involved.

0, (T"/2p!/?) +op(Tp1/2 %), for alld,j =1,.

Proof of Theorem A.1

Part (a) We begin by examining the stochastic orders of the component sample moments appearing
in Agr and Bgr defined below (8). Let A(-) denote eigenvalues of a matrix. We have

Amin(S7H @ In) X, X, < X (57 @ 1) X,

Notice that Amin(i_l ®Ir) = )\min(i_l) and )\min( b= I/Amax( ). Then we have

(X;)(fll ® IT)Xp> . < Aae(S) <&> . 0,(1) (28)

T T
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since Amax(X) =5 Amax(E) < 0o and (T7'X]X,) ™' = 0,(1) due to Lemma A2 (a). Moreover it

follows from Lemma A2 (b) that
X157 @ 1)V = 0y (T5?)

where p = max p;, and from Lemma A2 (c) that
1<i<nN

XL(ET @ Ir)e, = 0p(TV'?) + 0, (T *p*)

where p = 1r<nii<nN p;. Notice that p=p = o(T1/2) as T — oo under Assumption 3.

It follows from (28), (29) and (30) that

V(S e l)X, (X;(ffl ® IT)Xp) X!\(S ' @)e,

< WETenx,

‘(X;)(fll ® IT)X,,)_1

= 0,(TPp ") + O,(T*/*p)

which implies ~
Acr Y/ (27t ® Ir)ep

T T + OP(]-) = QAGT + Op(l)

due to Lemma A1 (a), where

N 1 T
Z lim (1)? Z w1 ,t—1Ejt
j=1 t=1
Qagr =

N

. 1 <
E UNJWN(I)?E Wy t—1Ejt
t=1

=1

where &;; denotes (i, j)-element of the covariance matrix estimate .
Moreover, we have from (28) and (29) that

Y57 ® I)X, (X;)(i—l ® IT)Xp) XS @)Y

< [WET X,

which, together with Lemma A1 (b) gives

B V(S @ I,;)Y,
or Y@ ST ) 0) = Qo+ 0p(1)

7 T°
where
1 « 1 «
5’1171'1(1)2? Z’wit71 &lNﬂ'l(l)ﬂ'N(l)F Zwl’t_le’t_l
t=1 t=1
QBGT = :
1 « 1 «
5N17TN(1)7T1(1)F ;UJN,tfl’LUl,tfl 5NNWN(1)2F;UJJ2M_1
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‘Xl’o(ffl ® Ir)ep

‘(X;,(i—l ®IT)XP)1H ‘X;,(S—l ®IT)Y4 = 0,(Tp)

(29)

(30)

(31)

(32)



Using the asymptotic results in (31) and (32), we write

Acr)' (Ber) ' (Aex _
Rae= () (F) (57) = 0 Qals s +arth

Then the limit distribution of Fy, follows immediately from the invariance principle given in (25).

Part (b) We have from Lemma A2 (b) and (c) that

X,Ye = 0,(Tp'?), Xpep = Op(T'?p' /%) + 0, (Tp'*p~*) (33)
These together with (28) give
|YEIXP(X;XP)_1X;510| < |YIZIXp| ||(X;;Xp)_1|| |X;5p| = Op(TZEI_’_S) +OP(T1/215)

which in turn gives

Aor _ Y/e,
T

2 +0p(1) = Qs +0y(1) (34)

due to Lemma Al (a), where

1 T
m (1)? Z W1 ,t—1€1¢
t=1

QAOT = :
1Z
ﬂ-N(]-)% ; Wn,t—1ENt

We have from (28) that 3
X,E0I;)X, < A V(X Xp) = 0,(T) (35)
Also it follows from Lemma A2 (b) that XI',(fJ @ I)Yr = 0, (Tp"/?).

Then we have ‘Y[’XP(X;XP)_lX;(i ® IT)Y,;‘ = 0p(Tp) and

max(i

[Y7X, (X, X,) 7 X, (5 9 1) X, (X, X,) 7 X, Ye| = 0,(Tp)

which in turn give R
Myor Y/ (E®1)Ys

R 72 +0p(1) = Qmpor +0p(1) (36)
due to Lemma Al (b), where
1 « 1 —
&11F1(1)2F2w%’t_1 &lNﬂ-l(l)ﬂ-N(l)F Zth_le,t_l
t=1 t=1
QMFOT = :
1 « 1 «
&NlﬂN(l)Wl(l)F Zw,\,,t,lwlyt,l (NTNN’]TN(].)ZF szzv,tfl

t=1 t=1

We now have from the results in (34) and (36) that
AOT ' MFOT ! AOT —1
For = ( T ) T2 T - QIAOTQMFOTQAOT + Op(l)
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from which the stated result follows immediately.

Proof of Corollary A.1
Part (a) It follows from (31) and (32) that

-1
Tagr = <BGT> <AGT> - QEéTQAGT +Op(]‘)

T2 T

which implies

1 AGT AGT —
F(er 51000 <01) = (S22 1 {52 <0}) = (@aer #1{Q5E, Qaer <01 +0y(0)

T

Due to the above result and (32), we may write the K, statistic given in (11) as

1 X "(Bor\T' (1 X
(; (AGT & Hbgr < O})) ( e > (; (AGT & Hbgr < 0}))
= (QAGT *1 {Ql;éTQAGT S 0})I QE;‘T (QAGT *1 {Ql;éTQAGT S 0}) + OP(]‘)

Now the stated result follows immediately from (25).

Part (b) From (28) and (33), we have |Yl’Xp(X1’DXp)’1X1’DYg| = O,(Tp), which together with
Lemma A1l (b) gives

Kor

B Y'Y,
TO2T = ;-,2 + Op(l) =W@Bor + Op(l)
where
1 « 1 «
Wl(l)zp > wi, 7T1(1)7TN(1)F > wigwag
t=1 t=1
QBOT = : (37)
1 « 1 «
7TN(1)7T1(1)F wa,t—lwl,t—l WN(1)2F Zw?\r,t—l

t=1 t=1

It follows from (34) and the above result that

~1
TdoT = <B0T> <AOT> - QgéTQAOT + Op(l)

T2 T

and
(Aor # Laor < 0)) = (Quor # 1{Qp}, Qaor < 0}) +0,(1)

From this and the result in (36), we may express the statistic Ko+ given in (12) as

1 "(Meor\ (1 A
<% (AOT * 1{@01“ < 0})) ( T2 ) (? (AOT X ]-{aOT < 0}))
= (QAOT x 1 {ngéTQAOT < 0})I Q]T/[lFOT (QAOT x1 {QgéTQAOT < 0}) + Op(l)

which is required for the stated result.

Kor
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Proof of Theorem A.2 The limit theories for the GLS and OLS based t-statistics tg and tor
defined in (14) can be derived in the similar manner as we did for the F-type tests For and Fyr in
the proof of Theorem A.1. We just have to take into account that the lagged level variables come
in as an (NT x 1)-vector y; instead of the (NT x N)-matrix Yp.

Part (a) We begin by examining the sample moments appearing in aqr and bgr, defined below
(14). Since X, (X7 @ I )ye = 0,(T5'/?) due to Lemma A2 (b), it follows from (28) and (30) that

VET 91X, (5T @ 1)X,) X ET 0 Ie,| = op(Tep™) + 0,(T'/)

and
- - -1 -
iET 9 L)X, (XS @ [)X,) XS @ L)y = 0,(Tp)
Then from the above results and Lemma A1l (a) and (b), it follows that
a y(E7 @ Ir)e = g ]
% = %‘*‘01)(1) = ;; ?Zyzt lfjt +0p(1) = Qagr +0p(1)
b ye(E ' ® In)ye SESIR R
% - ETT+OP(1) = ZZ ]TQZZIH 19,01+ 0p(1) = Qpgr +0p(1)
=1 j—=1 t=1
where
N N 1 T
Qagr = ZZ&”W(I)? Zwi,t—16jt
i=1 j=1 t=1
N N B 1 T
Qver = Zzﬁ”ﬁi(l)ﬂj(l)p Zwi,tﬂwj,tq
i=1 j=1 t=1

We may now write ¢tz defined in (14) as follows

aer [ bar -1/ 1/2
ter = T F QaGTQb + Op(l)

and the limit theory for tsr is directly obtained from applying the invariance principle in (25) to
QaGT and QbGT'

Part (b) Again, we first analyze the components a,r and M, r, defined below (14), that constitute
the OLS based t-statistic to, given in (14). Since

X;)yl = Op(Tﬁlﬂ) and X;)(i ® Ir)ye = Op(Tﬁl/z)

by Lemma A2 (b), we have from (35) that

|YZ X Xp)~ 1X1’)5p| Op(Tpﬂis)"FOp(Tl/zﬁ)

Op(TD)

‘Y‘Z,Xp XX, XS IT)Yg‘

VX, (X, X,) X (£ 0 L)X,(X,X,) XY = 0,(7p)
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We now deduce from Lemma Al (a) and (b) that

N T

a YyE 1 .

% = % +0p(1) = Z T Zyi,tflffft +0p(1) = Qaor +0p(1)
i=1 " t=1

T

Mt yli®]— Ye 7
g = ST 0,0 = 303 i D i e + 00D = Quior +0n(D)

T2 T2
=1 ]:1 t=1
where
N
QEOT - Z szt 1€it
i=1
N N T
QMior ZZ '(UF D wip 1wy
i=1 j=1 t=1
Then we have 12
aor (Mior\ —1/2
tor = () = Q@i o)

from which the stated result follows immediately.

Proofs for the Bootstrap Asymptotics

In the following lemma, we use an operator norm for matrices: if C' = (¢;;) is a matrix, then we
let ||C|| = max, |Cz|/|z|.
Lemma B2 Let 23" = (Ayf; ,,...,Ay;;_,,)'. Then we have

-1

1 . .
(a) E* (; Zmitpla:itp”> =0,(1),foralli=1,...,N
T
Zx:tply;t 1
3 s -

under Assumptlons 1-3.

E* O(Tpiﬂ) a.s., foralli,j=1,...,N.

(¢c) E* T1/2p$/2) a.s., foralli,j=1,...,N.

Proofs of Lemmas B1 and B2 The stated results follow directly from Lemmas 3.2 and 3.3 of
Chang and Park (1999), and thus omitted.

Proof of Theorem B.1 The proof here follows closely the lines of the proof of Theorem A.1,
using the bootstrap asymptotics established in Lemmas 1 and 2.

Part (a) From Lemma 2 (a), we have

(Xg'@l@IT)X;) < () (X’f'X‘j)_ = 0;(1) (39)

T T

which along with the results in Lemma B1 (b) and Lemma B2 (b) and (c) gives

*

O — v @ Ip)e* + op(1) = Qaz, +0,(1) (39)
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in P under Assumptions 1 — 3, where Q 4, is defined similarly as Q a4, in (31) with 7;(1), w}; and

*

e, in the places of m;(1), wy and ;. Similarly, we have from (38), Lemma B1 (b) and Lemma 2
(b) that

*

B *1 (g — * * *
o =Y Lo L)Y +op(1) = Qpy, +0p(1) (40)

in P under Assumptions 1 — 3, analogously as before, where Qg is defined similarly as Qg
given below (32) with 7;(1) and w}, in the places of m;(1) and wj, respectively.
We now write the bootstrapped statistic £}, as

. A*T ! B*T -1 A*T ~ )
For = < ch ) ( TGQ ) ( ; ) = Q;‘Z‘TQB%:TQAET + 0,(1)

due to (39) and (40). It is shown in Park (1999) that

Ti(1) —a.s. mi(1) (41)

and, using the multivariate bootstrap invariance principle developed in Chang, Park and Song (2000),
we have

%tzT}wZ‘_lsz" g /01 BdB' a.s., % ti;w:_lw:'_l > /01 BB’ as. (42)
under Assumptions 1 — 3. Now, the limiting distribution of the F, follows immediately.
Part (b) It follows from Lemma 2 (b) and (c) that
XY = 0nTEY?), X)let =051 ?p'?) (43)
which together with (38) and Lemma B1 (a) implies that

Ar _Y[ler
T T

+0,(1) = Qag,. +0,(1) (44)

where ) 4»  is defined similarly as Q4. in (34) with the bootstrap samples and 7(1).
Next, we deduce from (38) and Lemma 2 (b) that

X'(EelL)X, =0T, X)) (EL)Y, =0T (45)

P
and this together with (43) gives

M;‘OT _ }/Z*I(i ® IT)}/Z*

T2 T2

+05(1) = Qare,_ +05(1) (46)

FOT

due to Lemma B1 (b), where Qarz is the bootstrap counterpart of Q o, given in (36).
Finally, we have from the results in (45) and (46)

. Ar O\ (MEo\ T (A _ .
Fo= () () () = @ @i 00+t

and the stated result now follows immediately from (41) and (42).

Proof of Corollary B.1 The proof is analogous to the proof of Corollary A.1.
Part (a) We have from the bootstrap asymptotic results established in (39) and (40) that
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A% BZT - AZT —1 *

Then we may write the K%, statistic given in (22) as

(7 (42510, < 0}))' (BT) (7 (420 #1405, <))
= (Quy, #1{Q5L, @y, <0}) @it (@ag, #1{@5L, Qs <0}) 4050

Now the stated result follows immediately from (41) and (42).

*
KGT

Part (b) Using the bootstrap asymptotic results in (38), (43) and Lemma B1 (b), we derive
By _ YV
72 72

+0p(1) = QBET + 0p(1)

where Qp:  is the bootstrap counterpart of Qp,, defined in (37). Similarly as in the proof of
Corollary A.1 (b), we may write the test K, given in (22) as

K, = (%(AZT *1{as, < 0})>I <MT;;T>_1 <% (AgT x1{a’, < 0})>
= (QABT &1 {QééTQA*OT < 0})I Q;/};OT (QABT x1 {QE%)TQABT < 0}) +05(1)

using the result in (46). The stated result now follows immediately from (41) and (42).

Proof of Theorem B.2 The limit distributions of the bootstrap GLS and OLS based t-statistics,
tr, and t¥,, defined in (24) are derived analogously as we did for the sample t-statistics tgr and

tor in the proof of Theorem A.2, using the bootstrap asymptotics established in Lemmas 1 and 2.

Part (a) It follows from Lemmas 1 and 2, and the result in (38) that

Cl* y*l(i—l ®I )5* . .
for = Mo T 10i(1) = Quyy +0(1)
b y'CT e L)y . )
o= e b ol(1) = Quy, + o)1)

where Qqx  and Q= are the bootstrap counterparts of Quq, and Qug, defined in the proof of
Theorem A.2 (a). We may now write ¢}, as

*
aGT

b\ 1/2
tor = T (TG§> = Quz, @y~ +0p(1)
and the limit theory for t%,, is directly obtained from (41) and (42).
Part (b) We have

X;yi = 051 ), XS I)y; = Op (17 ?)
by Lemma A2 (b). Then we may deduce from Lemma B1 and (45) that

a* y*IS* . i

;T - ZT +o,(1) = Qay, +0p(1)
M, 'S L)y | . \
7 = Tt = Qg +o1)
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where Qq:  and Quy . are the bootstrap counterparts to Qo and Qu,o, given in the proof of
Theorem A.2 (b). Then we have

* * -1/2
* a M —1/2 «
Ge= % () = onufl ra0

The stated result now follows immediately from (41) and (42).
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Table MS.A: Finite Sample Sizes for AR Errors, Demeaned Case

(A1) p; ~U(-0.8,0.8) (A2) p; ~U(0.2,0.4) (A3) p; ~U(-0.8,0.8), ID
T tests min mean med max min mean med max min mean med max
100  t-bar 0.052 0.069 0.070 0.082 0.055 0.070 0.070 0.085 0.040 0.053 0.052 0.074
Fer 0.042 0.054 0.054 0.072 0.042 0.054 0.052 0.070 0.036  0.051 0.051 0.065
F5r 0.041 0.054 0.055 0.067 0.043 0.054 0.054 0.069 0.040 0.055 0.055 0.064
K¢ or 0.041 0.054 0.055 0.074 0.041 0.053 0.052 0.071 0.036  0.051 0.051 0.065
K§r 0.040 0.055 0.055 0.067 0.043 0.054 0.055 0.068 0.040 0.055 0.055 0.065
ter 0.037  0.050 0.050 0.061 0.039 0.049 0.049 0.064 0.037 0.051 0.053 0.062
Lo 0.036 0.051 0.050 0.066 0.040 0.053 0.054 0.068 0.039 0.054 0.055 0.069
100  t-bar 0.061 0.073 0.074 0.086 0.054 0.072 0.072 0.084 0.046 0.056 0.056 0.070
Fr 0.044 0.054 0.054 0.064 0.037 0.054 0.053 0.068 0.045 0.053 0.051 0.064
F5r 0.042 0.058 0.059 0.070 0.047 0.057 0.057 0.066 0.050 0.061 0.061 0.074
K¢ o 0.044 0.055 0.055 0.065 0.036 0.054 0.054 0.069 0.044 0.054 0.052 0.065
Kt 0.045 0.058 0.058 0.070 0.045 0.057 0.057 0.068 0.050 0.061 0.061 0.074
ter 0.037 0.053 0.053 0.071 0.048 0.057 0.058 0.069 0.039 0.058 0.058 0.075
t5r 0.039 0.056 0.057 0.071 0.043 0.059 0.060 0.074 0.044 0.064 0.067 0.078

Table MP.A: Finite Sample Powers for AR Errors, Demeaned Case

(A1) p; ~U(-0.8,0.8) (A2) p; ~U(0.2,0.4) (A3) p; ~U(-0.8,0.8), ID
T tests min mean med max min mean med max min mean med max
100  t-bar 0.549 0.856 0.885 0.992 0.522 0.842 0.901 0.989 0.568 0.873 0.913 0.997
Fgr 0.479 0.863 0.929 0.998 0.447 0.844 0.907 0.992 0.457 0.833 0.888 0.993
F5r 0.354 0.726  0.723  0.952 0.326 0.695 0.701 0.928 0.462 0.842 0.900 0.997
K¢ or 0.480 0.863 0.929 0.998 0.448 0.845 0.909 0.993 0.462 0.834 0.889 0.993
K§r 0.357 0.728 0.724 0.952 0.326  0.697 0.702 0.930 0.464 0.843 0.901 0.997
ter 0.066 0.558 0.562 0.994 0.346  0.727  0.747  0.996 0.103 0.633 0.663 0.992
Lo 0.093 0.584 0.580 0.911 0.231 0.655 0.635 0.961 0.144 0.664 0.711 0.991
100  t-bar 0.949 0.987 0.994 1.000 0.939 0.983 0.993 1.000 0.963 0.992 0.997 1.000
Fr 0.917 0.989 0.999 1.000 0.900 0.985 0.997 1.000 0.897 0.976  0.990 1.000
F5r 0.801 0.945 0.963 0.998 0.770 0.930 0.958 0.992 0.918 0.982 0.993 1.000
K¢ o 0.917 0.989 0.999 1.000 0.901 0.986 0.997 1.000 0.901 0.977 0.991 1.000
Kt 0.806 0.946 0.964 0.998 0.775 0.932 0.960 0.992 0.921 0.982 0.993 1.000
ter 0.121 0.584 0.669 0.964 0.495 0.836 0.856  0.993 0.250 0.732 0.813 0.993
t5r 0.347 0.770 0.837 0.985 0.722 0.910 0.907 0.992 0.359 0.796 0.873  0.995
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Table MS.M: Finite Sample Sizes for M A Errors, Demeaned Case

(M1) 0; ~U(—0.8,—0.4) (M2) 0; ~U(—0.4,0.4) (M3) 6; ~U(0.4,0.8)

N T tests min mean med max min mean med max min mean med max
100  t-bar 0.290 0.450 0.434 0.638 0.087 0.107 0.103 0.152 0.091 0.100 0.100 0.115

Fer 0.117 0.179 0.174 0.275 0.046  0.057 0.057 0.071 0.046 0.056 0.053 0.067

F5r 0.090 0.142 0.139 0.219 0.047 0.064 0.065 0.084 0.045 0.057 0.057 0.068

K¢ or 0.116 0.180 0.175 0.276 0.046  0.057 0.057 0.069 0.045 0.056 0.053 0.068

K§r 0.090 0.142 0.139 0.217 0.048 0.064 0.065 0.084 0.045 0.057 0.057 0.069

ter 0.125 0.172 0.161  0.258 0.052 0.060 0.059 0.074 0.046 0.058 0.058 0.068

Lo 0.105 0.139 0.137  0.200 0.051 0.063 0.061 0.074 0.049 0.059 0.059 0.073

10 100 t¢-bar 0.505 0.663 0.651 0.812 0.102 0.130 0.134 0.161 0.099 0.121 0.121 0.142
Fr 0.176  0.268 0.268 0.343 0.045 0.059 0.059 0.071 0.041 0.054 0.053 0.067

F5r 0.173 0.228 0.230 0.291 0.061 0.074 0.075 0.089 0.056 0.066 0.067 0.077

K¢ o 0.179 0.269 0.269 0.345 0.044 0.059 0.058 0.072 0.043 0.053 0.052 0.068

Kt 0.178 0.230 0.232 0.295 0.062 0.074 0.074 0.089 0.055 0.066 0.067 0.078

ter 0.190 0.251 0.245 0.322 0.049 0.067 0.070 0.080 0.041 0.069 0.068 0.089

t5r 0.153  0.203 0.200 0.246 0.044 0.070 0.072 0.082 0.047 0.068 0.069 0.087

Table MP.M: Finite Sample Powers for M A Errors, Demeaned Case

(M1) 0; ~U(—0.8,—0.4) (M2) 0; ~U(—0.4,0.4) (M3) 6; ~U(0.4,0.8)

N T tests min mean med max min mean med max min mean med max
100  t-bar 0.960 0.994 0.998 1.000 0.629 0.896 0.936  0.995 0.581 0.824 0.845 0.957

Fr 0.885 0.976 0.986  1.000 0.573 0.880 0.921  0.990 0.467 0.789 0.819 0.951

F5r 0.764 0.945 0.968 0.999 0.443 0.777 0.792 0.961 0.363 0.671 0.661 0.891

K¢ or 0.885 0.976 0.986  1.000 0.574 0.881 0.923 0.990 0.467 0.791 0.820 0.951

K§r 0.766  0.946  0.968  0.999 0.444 0.779 0.796 0.961 0.367 0.673 0.661 0.894

ter 0.653 0.940 0.984 1.000 0.315 0.761 0.821  0.999 0.418 0.719 0.721  0.969

Lo 0.461 0.900 0.949 1.000 0.241 0.714 0.734 0.961 0.280 0.645 0.592 0.937

10 100 t¢-bar 1.000 1.000 1.000 1.000 0.964 0.993 0.998 1.000 0.851 0.961 0.972 0.998
Fr 0.997 1.000 1.000 1.000 0.931 0.989 0.996 1.000 0.833 0.948 0.969  0.995

F5r 0.991 0.999 1.000 1.000 0.844 0.966 0.984 0.998 0.727 0.890 0.913 0.981

K¢ o 0.997 1.000 1.000 1.000 0.932 0.989 0.996 1.000 0.835 0.949 0.970 0.995

Kt 0.991 0.999 1.000 1.000 0.847 0.967 0.984 0.998 0.734 0.893 0.917 0.982

ter 0.878 0.984 0.998 1.000 0.474 0.860 0.951 0.994 0.560 0.828 0.856  0.994

t5r 0.942 0.991 0.999 1.000 0.735 0.929 0.946 0.996 0.571 0.871 0.875 0.989
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Table TS.A: Finite Sample Sizes for AR Errors, Detrended Case

(A1) p; ~U(-0.8,0.8) (A2) p; ~U(0.2,0.4) (A3) p; ~U(-0.8,0.8), ID
T tests min mean med max min mean med max min mean med max
100  t-bar 0.076  0.086 0.084 0.102 0.068 0.087 0.085 0.108 0.054 0.066 0.068 0.076
Fer 0.034 0.049 0.049 0.060 0.037  0.050 0.050 0.060 0.039 0.050 0.050 0.060
F5r 0.041 0.053 0.052 0.075 0.043 0.053 0.052 0.070 0.042 0.054 0.056 0.063
K¢ or 0.034 0.049 0.049 0.060 0.037  0.050 0.050 0.060 0.039 0.050 0.050 0.060
K§r 0.041 0.053 0.052 0.075 0.043 0.053 0.052 0.070 0.042 0.055 0.056 0.063
ter 0.033 0.045 0.045 0.059 0.039 0.052 0.051 0.062 0.039 0.047 0.048 0.058
Lo 0.034 0.048 0.049 0.059 0.038 0.052 0.052 0.067 0.032 0.050 0.050 0.064
100  t-bar 0.080 0.095 0.092 0.118 0.074 0.097 0.099 0.115 0.061 0.075 0.076  0.095
Fr 0.039 0.053 0.053 0.061 0.038 0.053 0.055 0.065 0.036 0.052 0.052 0.063
F5r 0.047 0.064 0.065 0.076 0.052 0.065 0.065 0.080 0.063 0.073 0.073 0.084
K¢ o 0.039 0.053 0.053 0.061 0.038 0.053 0.055 0.065 0.036 0.052 0.052 0.063
Kt 0.047 0.064 0.066 0.076 0.052 0.064 0.065 0.080 0.063 0.073 0.073 0.084
ter 0.037 0.050 0.049 0.068 0.046 0.058 0.058 0.083 0.043 0.052 0.051 0.071
t5r 0.038 0.058 0.057 0.078 0.058 0.069 0.069 0.084 0.046 0.063 0.064 0.079

Table TP.A: Finite Sample Powers for AR Errors, Detrended Case

(A1) p; ~U(-0.8,0.8) (A2) p; ~U(0.2,0.4) (A3) p; ~U(-0.8,0.8), ID
T tests min mean med max min mean med max min mean med max
100  t-bar 0.335 0.651 0.655 0.911 0.324 0.633 0.670 0.875 0.313 0.663 0.672 0.928
Fr 0.240 0.626 0.677  0.899 0.225 0.599 0.633 0.857 0.224 0.580 0.609 0.866
F5r 0.176  0.485 0.471  0.777 0.169 0.453 0.445 0.723 0.247 0.612 0.637 0.894
K¢ or 0.240 0.626 0.677  0.899 0.225 0.599 0.633 0.857 0.224 0.580 0.609 0.866
K§r 0.176  0.485 0.471  0.777 0.169 0.453 0.445 0.723 0.247 0.612 0.638 0.894
ter 0.038 0.331 0.282 0.874 0.199 0.487 0.459 0.852 0.059 0.391 0.342 0.867
Lo 0.052 0.342 0.338 0.672 0.146 0.419 0.410 0.759 0.080 0.430 0.392 0.879
100  t-bar 0.707 0.884 0.899 0.980 0.682 0.864 0.883 0.968 0.720 0.897 0.918 0.993
Fr 0.636  0.877 0.895 0.984 0.586 0.847 0.863 0.963 0.580 0.815 0.825 0.965
F5r 0.534 0.778 0.804 0.958 0.499 0.739 0.772 0.895 0.636 0.865 0.887 0.988
K¢ o 0.636  0.877 0.895 0.984 0.586 0.847 0.863 0.963 0.580 0.815 0.825 0.965
Kt 0.534 0.778 0.804 0.957 0.499 0.739 0.772 0.895 0.636 0.865 0.887 0.988
ter 0.062 0.280 0.293 0.710 0.331 0.604 0.626  0.872 0.165 0.422 0.425 0.755
t5r 0.248 0.501 0.508 0.767 0.495 0.714 0.699 0.905 0.248 0.537 0.548 0.841
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Table T'S.M: Finite Sample Sizes for M A Errors, Detrended Case

(M1) 0; ~U(—0.8,—0.4) (M2) 0; ~U(—0.4,0.4) (M3) 6; ~U(0.4,0.8)
T tests min mean med max min mean med max min mean med max
100  t-bar 0.599 0.755 0.732  0.906 0.135 0.183 0.182 0.235 0.164 0.179 0.178 0.208
Fer 0.120 0.159 0.159 0.192 0.051 0.071  0.072 0.089 0.046 0.063 0.064 0.078
F5r 0.085 0.112 0.110 0.143 0.058 0.080 0.082 0.099 0.047 0.069 0.067 0.084
K¢ or 0.120 0.159 0.159 0.192 0.051 0.071  0.072 0.089 0.046 0.063 0.064 0.078
K§r 0.085 0.112 0.110 0.143 0.058 0.080 0.082 0.099 0.047 0.069 0.067 0.084
ter 0.176  0.225 0.218 0.315 0.061 0.071  0.071 0.085 0.057 0.070 0.070  0.087
Lo 0.124 0.162 0.161 0.219 0.054 0.074 0.070 0.097 0.052 0.067 0.068 0.083
100  t-bar 0.857 0.937 0.948 0.988 0.228 0.262 0.255 0.325 0.228 0.246 0.249 0.265
Fr 0.171 0.219 0.227 0.281 0.060 0.072 0.071  0.092 0.051 0.063 0.061 0.076
F5r 0.152 0.193 0.195 0.229 0.088 0.104 0.102 0.119 0.079 0.088 0.087 0.102
K¢ o 0.171 0.219 0.227 0.281 0.060 0.072 0.071  0.092 0.051 0.063 0.061 0.076
Kt 0.152 0.194 0.196  0.229 0.088 0.104 0.102 0.119 0.079 0.088 0.087 0.102
ter 0.293 0.354 0.356 0.416 0.077 0.091 0.090 0.108 0.080 0.095 0.097 0.110
t5r 0.263 0.299 0.290 0.344 0.082 0.109 0.108 0.136 0.084 0.097 0.098 0.109

Table TP.M: Finite Sample Powers for M A Errors, Detrended Case

(M1) 0; ~U(—0.8,—0.4) (M2) 0; ~U(—0.4,0.4) (M3) 6; ~U(0.4,0.8)
T tests min mean med max min mean med max min mean med max
100  t-bar 0.954 0.991 0.997 1.000 0.489 0.788 0.825 0.965 0.466 0.694 0.708 0.865
Fr 0.568 0.834 0.867 0.963 0.326 0.680 0.710 0.905 0.268 0.544 0.554  0.780
F5r 0.412 0.757 0.760  0.932 0.296 0.581 0.576  0.832 0.235 0.459 0.443 0.681
K¢ or 0.568 0.834 0.867 0.963 0.326 0.680 0.710 0.905 0.268 0.544 0.554 0.780
K§r 0.412 0.757 0.760  0.932 0.296 0.581 0.576  0.832 0.235 0.459 0.443 0.682
ter 0.468 0.842 0.910 0.995 0.214 0.576  0.592  0.954 0.275 0.506 0.475 0.831
Lo 0.362 0.770 0.814 0.974 0.195 0.524 0.542 0.828 0.203 0.436  0.400 0.727
100  t-bar 0.999 1.000 1.000 1.000 0.840 0.956 0.972  0.996 0.796 0.911 0.927 0.972
Fr 0.891 0.963 0.976  0.999 0.674 0.902 0.940 0.982 0.527 0.780 0.821 0.911
F5r 0.874 0.969 0.982 0.998 0.640 0.869 0.903 0.978 0.527 0.749 0.768 0.887
K¢ o 0.891 0.963 0.976  0.999 0.674 0.902 0.940 0.982 0.527 0.780 0.821 0.911
Kt 0.874 0.969 0.982 0.998 0.640 0.869 0.903 0.978 0.528 0.749 0.768 0.887
ter 0.783 0.942 0.984 0.996 0.370 0.691 0.778  0.920 0.464 0.679 0.663 0.916
t5r 0.914 0.967 0.983  0.999 0.612 0.806 0.827 0.964 0.600 0.750 0.748 0.907
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