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Abstract

We apply bootstrap methodology to unit root tests for dependent panels with N

cross-sectional units and T time series observations. More speci�cally, we let each

panel be driven by a general linear process which may be di�erent across cross-

sectional units, and approximate it by a �nite order autoregressive integrated pro-

cess of order increasing with T . As we allow the dependency among the innovations

generating the individual series, we construct our unit root tests from the estima-

tion of the system of the entire N cross-sectional units. The limit distributions of

the tests are derived by passing T to in�nity, with N �xed. We then apply boot-

strap method to the approximated autoregressions to obtain critical values for the

panel unit root tests, and establish the asymptotic validity of such bootstrap panel

unit root tests under general conditions. The proposed bootstrap tests are indeed

quite general covering a wide class of panel models. They in particular allow for

very general dynamic structures which may vary across individual units, and more

importantly for the presence of arbitrary cross-sectional dependency. The �nite

sample performance of the bootstrap tests is examined via simulations, and com-

pared to that of commonly used panel unit root tests. We �nd that our bootstrap

tests perform relatively well, especially when N is small.
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1. Introduction

Recently, nonstationary panels have drawn much attention in both theoretical and empirical re-

search, as a number of panel data sets covering relatively long time periods have become available.

Various statistics for testing unit roots and cointegration for panel models have been proposed, and

frequently used for testing growth convergence theories, purchasing power parity hypothesis and

for estimating long-run relationships among many macroeconomic and international �nancial series

including exchange rates and spot and future interest rates. Such panel data based tests appeared

attractive to many empirical researchers, since they o�er alternatives to the tests based only on

individual time series observations that are known to have low discriminatory power. A number of

unit roots and cointegration tests have been developed for panel models by many authors. See Levin

and Lin (1992,1993), Quah (1994), Im, Pesaran and Shin (1997) and Maddala and Wu (1996) for

some of the panel unit root tests, and Pedroni (1996,1997) and McCoskey and Kao (1998) for the

panel cointegration tests available in the current literature. Banerjee (1999) gives a good survey on

the recent developments in the econometric analysis of panel data whose time series component is

nonstationary.2

Since the work by Levin and Lin (1992), a number of unit root tests for panel data have been

proposed. Levin and Lin (1992,1993) consider unit root tests for homogeneous panels, which are

simply the usual t-statistics constructed from the pooled estimator with some appropriate modi�-

cations. Such unit root tests for homogeneous panels can therefore be represented as a simple sum

taken over i = 1; : : : ;N and t = 1; : : : ; T . They show under cross-sectional independency that the

sequential limit of the standard t-statistics for testing the unit root is the standard normal distri-

bution.3 For heterogeneous panels, the unit root test can no longer be represented as a simple sum

since the pooled estimator is inconsistent for such heterogeneous panels as shown in Pesaran and

Smith (1995). Consequently the second stage N -asymptotics in the above sequential asymptotics

does not work here. Im, Pesaran and Shin (1997) look at the heterogeneous panels and propose unit

root tests which are based on the average of the independent individual unit root tests, t-statistics

and LM statistics, computed from each individual unit. They show that their tests also converge

to the standard normal distribution upon taking sequential limits. Though they allow for the het-

erogeneity, their limit theory is still based on the cross-sectional independency, which can be quite

a restrictive assumption for most of the economic panel data we encounter.

The tests suggested by Levin and Lin (1993) and Im, Pesaran and Shin (1997) are not valid in the

presence of cross-correlations among the cross-sectional units. The limit distributions of their tests

are no longer valid and unknown when the independency assumption is violated. Indeed, Maddala

and Wu (1996) show through simulations that their tests have substantial size distortions when used

for cross-sectionally dependent panels. As a way to deal with such inferential diÆculty in panels

with cross-correlations, they suggest to bootstrap the panel unit root tests, such as those proposed

by Levin and Lin (1993), Im, Pesaran and Shin (1997) and Fisher (1933), for cross-sectionally

dependent panels. They show through simulations that the bootstrap versions of such tests perform

much better, but do not provide the validity of using bootstrap methodology.

In this paper, we apply bootstrap methodology to unit root tests for cross-sectionally dependent

panels. More speci�cally, we let each panel be driven by a general linear process which may di�er

2Stationary panels have a much longer history and have been intensely investigated by many researchers. The

readers are referred to the books by Hsiao (1986), Matyas and Sevestre (1996) and Baltagi (1995) for the literature

on the econometric analysis of panel data.
3The sequential limit is taken by �rst passing T to in�nity with N �xed and subsequently let N tend to in�nity.

Regression limit theory for nonstationary panel data is developed rigorously by Phillips and Moon (1999). They show

that the limit of the double indexed processes may depend on the way N and T tend to in�nity. They formally

develop the asymptotics of sequential limit, diagonal path limit (N and T tend to in�nity at a controlled rate of the

type T = T (N )) and joint limits (N and T tend to in�nity simultaneously without any restrictions imposed on the

divergence rate). Their limit thoery, however, assumes cross-sectional independence.
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across cross-sectional units, and approximate it by a �nite order autoregressive integrated process

of order increasing with T . As we allow the dependency among the innovations generating the

individual series, we construct our unit root tests from the estimation of the system consisting of

the entire N cross-sectional units. The limit distributions of the tests are derived by passing T to

in�nity, with N �xed. We then apply the bootstrap method to the approximated autoregressions to

obtain the critical values for the panel unit root tests based on the original sample, and establish

the asymptotic validity of such bootstrap panel unit root tests under general conditions.

The rest of the paper is organized as follows. Section 2 introduces the unit root tests for cross-

sectionally dependent panels based on the original sample, and constructs the bootstrap tests by

applying the sieve bootstrap methodology to the sample tests. Also discussed in Section 2 are

the practical issues arising from the implementation of the sieve bootstrap methodology and the

extension of our method to models with deterministic trends. Section 3 derives the limit theories

for the asymptotic tests and establishes asymptotic validity of the sieve bootstrap unit root tests.

In Section 4, we conduct simulations to investigate �nite sample performance of the bootstrap unit

root tests. Section 5 concludes, and mathematical proofs are provided in an Appendix.

2. Unit Root Tests for Dependent Panels

We consider a panel model generated as the following �rst order autoregressive regression:

4yit = �iyi;t�1 + uit; i = 1; : : : ;N ; t = 1; : : : ; T : (1)

As usual, the index i denotes individual cross-sectional units, such as individuals, households, in-

dustries or countries, and the index t denotes time periods. We are interested in testing the unit

root null hypothesis, �i = 0 for all yit given as in (1), against the alternative, �i < 0 for some

yit, i = 1; : : : ;N . Thus, the null implies that all yit's have unit roots, and is rejected if any one of

yit's is stationary with �i < 0. The rejection of the null therefore does not imply that the entire

panel is stationary. The initial values (y10; : : : ; yN0) of (y1t; : : : ; yNt) do not a�ect our subsequent

asymptotic analysis as long as they are stochastically bounded, and therefore we set them at zero

for expositional brevity.

It is assumed that the error term (uit) in the model (1) is given by a general linear process

speci�ed as

uit = �i(L)"it (2)

where L is the usual lag operator and �i(z) =
P

1

k=0 �i;kz
k; for i = 1; : : : ;N . Note that we let �i(z)

vary across i, thereby allowing heterogeneity in individual serial correlation structures. We also allow

for the cross-sectional dependency through the cross-correlation of the innovations "it; i = 1; : : : ;N

that generate the errors uit. To de�ne the cross-sectional dependency more explicitly, we de�ne the

time series innovation ("t)
T

t=1 by

"t = ("1t; : : : ; "Nt)
0 (3)

and denote by j � j the Euclidean norm: for a vector x = (xi), jxj2 =
P

i x
2
i , and for a matrix

A = (aij); jAj =
P

i;j a
2
ij . For the development of the asymptotics for the sample statistics and the

bootstrapped tests, we assume

Assumption 1 Let ("t) be a sequence of iid random variables such that E"t = 0, E"t"
0

t = � and

Ej"tjr <1 for some r � 4.

Assumption 2 Let �i(z) 6= 0 for all jzj � 1, and
P

1

k=0 jkjsj�i;k j < 1 for some s � 1, for all

i = 1; : : : ;N .
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Under Assumptions 1 and 2, we may write the linear process given in (2) as an in�nite order

autoregressive (AR) process �i(L)uit = "it with �i(z) = 1�P1

k=1 �i;kz
k, and approximate (uit) by

a �nite order AR process

uit = �i;1ui;t�1 + � � �+ �i;piui;t�pi + "
pi
it (4)

where "
pi
it = "it+

P
1

k=pi+1 �i;kui;t�k. The error in approximating (uit) by a �nite order AR process

can be made negligible if we increase pi with T . See Chang and Park (2001) for details. For the

order pi in the AR approximation (4), we assume

Assumption 3 Let pi !1 and pi = o((T= log T )1=2) as T !1, for all i = 1; : : : ;N .

Some of the limit theories in the paper can be obtained under weaker conditions. In particular, the

iid assumption in Assumption 1 is made to make the usual bootstrap procedure meaningful. All our

asymptotics here go through for more general models with martingale di�erence innovations. See

Chang and Park (2001). Assumption 3 is suÆcient to establish the consistency of our subsequent

bootstrap tests in the weak form, i.e., the convergence of conditional bootstrap distributions in

probability. To establish the strong consistency or the a.s. convergence of conditional bootstrap

distributions, we need to assume that pi=n
(1=rs)+Æ !1 with some Æ > 0 for all i = 1; : : : ;N .4 The

reader is referred to Chang and Park (1999) for further details.

Using the AR approximation of (uit) given in (4), we write the model (1) as

4yit = �iyi;t�1 +

piX
k=1

�i;k4yi;t�k + "
pi
it (5)

since4yit = uit under the null hypothesis. This can be seen as an autoregression of4yit augmented

by yi;t�1. Our unit root tests will be based on the above approximated autoregression.5 For prac-

tical implementations, we may choose pi's using the usual order selection criteria such as Schwartz

information criterion (BIC) or Akaike information criterion (AIC).6 The order selection can be based

either on the regression (5) with no restriction on �i's, or on the approximated AR regression in (4)

where �i's are restricted to be zero. This will not a�ect our subsequent limit theory.

The augmented autoregression (5) can be written in the following matrix form by taking the

individual units, with all their T observations, one after another, viz.0
B@
4y1
...

4yN

1
CA =

0
B@
y`;1 0

. . .

0 y`;N

1
CA
0
@ �1

...

�N

1
A+

0
B@
X

p1
1 0

. . .

0 X
pN
N

1
CA
0
B@

�
p1
1

...

�
pN
N

1
CA+

0
B@

"
p1
1

...

"
pN
N

1
CA

or more compactly

4y = Y`�+Xp�p + "p (6)

where for all i = 1; : : : ;N , y`;i = (y0i;0; : : : ; y
0

i;T�1)
0, �pii = (�i;1; : : : ; �i;pi)

0 and X
pi
i = (xpii1 ; : : : ; x

pi
iT )

0

with x
pi0
it = (4yi;t�1; : : : ;4yi;t�pi).

We now present our panel unit root tests based on the original sample, and subsequently construct

their bootstrap versions later in this section. Their limit theories will be derived in the next section.

4However, the presence of this lower bound for pi's would prelude using an information criterion to select the order

for the approximating AR.
5Our regression (5) here may be viewed as an extension of the unit root regression considered in Said and Dickey

(1984) to the panel models. However, our assumption on the AR order pi is substantially weaker than the one used

by Said and Dickey (1984), due to the result in Chang and Park (2001).
6As for the choice among the selection criteria, BIC might be preferred if (uit) is believed to be generated by a

�nite autoregression, since it yields a consistent estimator for pi. If not, AIC may be a better choice, since it leads

to an asymptotically eÆcient choice for the optimal order of some projected in�nite order autoregressive process. See

Chang and Park (1999) for more discussions on this issue.
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2.1 Panel Unit Root Tests

For testing the null hypothesis of the unit roots in yt = (y1t; : : : ; yNt)
0 generated by (1) and (2), we

�rst consider the tests based on the system GLS and OLS estimation of the augmented autoregression

(6). The F -type test based on the feasible system GLS estimator �̂GT of � in (6) for testing the null

� = 0 is constructed as

FGT = �̂0
GT
(var(�̂GT ))

�1�̂GT = A0
GT
B�1
GT
AGT (7)

where �̂GT = B�1
GT
AGT ,

AGT = Y 0

` (
~��1 
 IT )"p � Y 0

` (
~��1 
 IT )Xp

�
X 0

p(
~��1 
 IT )Xp

�
�1

X 0

p(
~��1 
 IT )"p

BGT = Y 0

` (
~��1 
 IT )Y` � Y 0

` (
~��1 
 IT )Xp

�
X 0

p(
~��1 
 IT )Xp

�
�1

X 0

p(
~��1 
 IT )Y`

and ~� is a consistent estimator of the covariance matrix �. The limit distribution for the test FGT
is easily derived from the asymptotic behaviors of the components AGT and BGT constituting FGT ,

and is given in Theorem A.1 in the next section.

On the other hand, the system OLS estimator of � in (6) is given by �̂OT = B�1
OT
AOT , and the

OLS-based F -type test for testing � = 0 is de�ned similarly as

FOT = �̂0
OT
(var(�̂OT ))

�1�̂OT = A0
OT
M�1

FOT
AOT (8)

where

AOT = Y 0

` "p � Y 0

`Xp(X
0

pXp)
�1X 0

p"p; BOT = Y 0

`Y` � Y 0

`Xp(X
0

pXp)
�1X 0

pY`;

MFOT = Y 0

` (
~�
 IT )Y` � Y 0

`Xp(X
0

pXp)
�1X 0

p(
~�
 IT )Y` � Y 0

` (
~�
 IT )Xp(X

0

pXp)
�1X 0

pY`

+ Y 0

`Xp(X
0

pXp)
�1X 0

p(
~�
 IT )Xp(X

0

pXp)
�1X 0

pY`:

The OLS estimator �̂OT is less eÆcient than the GLS estimator �̂GT in our context. The OLS-based

test FOT in (8) is thus expected to be less powerful than the GLS-based test FGT given in (7).

However, we observe in our simulations that FOT often performs better than FGT in �nite samples,

especially when N is large, i.e., when the dimension of the covariance matrix � is large.

To construct a consistent estimator for the covariance matrix �, we may estimate the regression

uit = ~�
pi
i;1ui;t�1 + � � �+ ~�

pi
i;pi

ui;t�pi + ~"
pi
it (9)

by single-equation OLS for i = 1; : : : ;N , with the unit root restriction �i=0 imposed. The estimates

~�
pi
i;k are uniformly close to �i;k for 1 � k � pi, and (�i;k) become negligible for k > pi in the limit as

long as we let pi !1.7 As a result, we may consistently estimate variance and covariance estimates

of ("it) using (~"
pi
it ). This is shown in Park (1999, Lemma 3.1). Of course, one may obtain consistent

�tted residuals by estimating the unrestricted regession (5). This again will not a�ect our limit

theory. From (~"
pi
it ), form the time series residual vectors

~"
p
t = (~"

p1
1t ; : : : ; ~"

pN
Nt )

0 (10)

for t = 1; : : : ; T . We then estimate � by ~� = T
�1
P

T

t=1 ~"
p
t ~"

p0
t : Notice that

~� =
1

T

TX
t=1

"
p
t "

p0
t + op(1) =

1

T

TX
t=1

"t"
0

t + op(1) = E"t"
0

t + op(1)

7Under Assumptions 1{3, we have max1�k�pi j~�
pi
i;k
��i;k j = O((log T=T )1=2)+ o(p�s

i
) a.s., and

P1

k=pi+1
�i;k =

o(p�s
i ).
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where the second equality follows from Lemma A1 (c) in Appendix. We use (~�
IT ) as an estimator

for the variance of the regression error in (6).

The F -type tests FGT and FOT considered here are two-tailed tests which reject the null �i = 0

for all i when �i 6= 0 for some i. Hence, they reject the null of the unit roots not only against the

stationarity �i < 0 but also against the explosive cases with �i > 0 for some i. This will have a

negative e�ect on the powers of the tests.

The framework within which we may e�ectively deal with the aforementioned problem has been

recently developed by Andrews (1999).8 To deal with the problem, we may replace zeros for the

members of �̂GT and �̂OT which have positive values. This can be easily carried out by multiplying

element by element the estimators �̂GT = (�̂GT ;1; : : : ; �̂GT ;N)
0 and �̂OT = (�̂OT ;1; : : : ; �̂OT ;N)

0 respec-

tively by the N-dimensional indicator functions 1f�̂GT � 0g and 1f�̂OT � 0g. Denote by :� the

element by element multiplication, and use this to modify the estimators �̂GT and �̂OT as follows

�̂GT :� 1f�̂GT � 0g=

0
B@

�̂GT ;11f�̂GT ;1 � 0g
...

�̂GT ;N1f�̂GT ;N � 0g

1
CA ; �̂OT :� 1f�̂OT � 0g=

0
B@

�̂OT ;11f�̂OT;1 � 0g
...

�̂OT ;N1f�̂OT;N � 0g

1
CA :

We now de�ne new statistics, which we call K-statistics. From the modi�ed GLS estimator

above, we de�ne the GLS-based K-statistic KGT as follows

KGT = (�̂GT :� 1f�̂GT � 0g)0 (var(�̂GT ))�1 (�̂GT :� 1f�̂GT � 0g)
= (AGT :� 1f�̂GT � 0g)0B�1

GT
(AGT :� 1f�̂GT � 0g) (11)

and similarly construct the OLS-based K-statistic KOT from the modi�ed OLS estimator as

KOT = (�̂OT :� 1f�̂OT � 0g)0 (var(�̂OT ))�1 (�̂OT :� 1f�̂OT � 0g)
= (AOT :� 1f�̂OT � 0g)0M�1

FOT
(AOT :� 1f�̂OT � 0g) : (12)

The K-statistics constructed as above are essentially one-sided tests, since they e�ectively eliminate

the probability of rejecting the null against the explosive alternatives. Therefore they are expected

to improve the power properties of the corresponding two-tailed F -type tests for testing of the unit

root null against the one-way stationary alternatives.

For the test of the unit root, we are testing �i = 0 for all i. Therefore, we are essentially looking

at a homogeneous panel, as far as testing of the null hypothesis is concerned. If the AR coeÆcients

�i's in our original model (1) are homogeneous, i.e., �1 = � � � = �N = �, then the corresponding

augmented AR in matrix form is given by

4y = y`�+Xp�p + "p (13)

which is the same as the augmented AR in matrix form for the original heterogeneous model (6),

except that here we have an (NT�1)-vector y` = (y0`;1; : : : ; y
0

`;N)
0 in the place of the (NT�N)-matrix

Y` and the parameter � is now a scalar instead of an (N � 1)-vector.

It is natural to consider the t-statistics for testing the null hypothesis of the unit roots in the

homogeneous model (13), since the parameter � to be tested is now a scalar. Here we do not allow

for the heterogeneity of the AR coeÆcient, as in Levin and Lin (1992,1993). Obviously, the unit root

test based on the homogeneous panel (13) is valid, since the model is correctly speci�ed under the

null hypothesis of the unit roots. The homogeneous panel, however, may not provide appropriate

modellings under the alternative hypothesis, and this may have an adverse e�ect on the power of

8Here we consider testing �i = 0 against �i < 0, and the parameter set is given by �i � 0 for each cross-sectional

unit i = 1; : : : ;N . The value of �i under the null hypothesis is therefore on the boundary of the parameter set.
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the tests. However, if the panel under consideration is believed to be homogeneous, we may use the

one-sided t-type tests, which have a clear advantage over the two-tailed F -type tests constructed

from the heterogeneous panels.

The OLS and GLS based t-statistics are constructed from the GLS and OLS estimators of the

scalar parameter � in the homogeneous augmented AR (13) and are given by

tGT = aGT b
�1=2
GT ; tOT = aOTM

�1=2
tOT (14)

where

aGT = y0`(
~��1 
 IT )"p � y0`(

~��1 
 IT )Xp(X
0

p(
~��1 
 IT )Xp)

�1X 0

p(
~��1 
 IT )"p

bGT = y0`(
~��1 
 IT )y` � y0`(

~��1 
 IT )Xp(X
0

p(
~��1 
 IT )Xp)

�1X 0

p(
~��1 
 IT )y`

aOT = y0`"p � y0`Xp(X
0

pXp)
�1X 0

p"p

MtOT = y0`(
~�
 IT )y` � 2y0`Xp(X

0

pXp)
�1X 0

p(
~�
 IT )y`

+ y0`Xp(X
0

pXp)
�1X 0

p(
~�
 IT )Xp(X

0

pXp)
�1X 0

py`:

Our analysis can be easily extended to the models with heterogeneous �xed e�ects and individual

deterministic trends. Suppose the series (zit) with a nonzero heterogeneous �xed eÆect is given by

zit = �i + yit (15)

or with an individual linear time trend by

zit = �i + Æit+ yit (16)

where the stochastic component (yit) is generated as in our earlier model (1). Then for testing the

presence of the unit roots in (y1t; : : : ; yNt) we may construct the panel unit root tests similarly from

the regression (5) de�ned with the �tted values, (y
�
it) or (y

�
it), of yit obtained from the preliminary

regressions (15) or (16) for i = 1; : : : ;N .

As we show in Section 3.1, the limit distributions of the panel unit root tests developed here

depend on various nuisance parameters that represent cross-correlations among the individual cross-

sectional units. Hence, the inference based directly on such tests are not possible. In the following

section, we now propose bootstrapping the tests developed here to deal with the nuisance parameter

problems in their limit distributions and to provide a valid basis for inference based on the panel

unit root tests for dependent panels.

2.2 Bootstrap Panel Unit Root Tests

In this section, we consider the sieve bootstraps for the various panel unit root tests, FGT , FOT , KGT ,

KOT , tGT and tOT considered in Section 2.1. Throughout the paper we use the conventional notation

� to signify the bootstrap samples, and use P� and E� to denote, respectively, the probability

and expectation conditional upon the realization of the original sample. While constructing the

bootstrapped tests, we also discuss various issues and problems arising in practical implementation

of the sieve bootstrap methodology.

To construct the bootstrapped tests, we �rst generate the bootstrap samples ("�it), (u
�

it) and

(y�it). For the generation of ("�it), we need to make sure that the dependence structure among cross-

sectional units, i = 1; : : : ;N , is preserved. To do so, we generate the N -dimensional vector ("�t ) =

("�1t; : : : ; "
�

Nt)
0 by resampling from the centered residual vectors (~"

p
t ) de�ned in (10) from the �tted

autoregression (9). That is, obtain ("�t ) from the empirical distribution of (~"
p
t � T

�1
P

T

t=1 ~"
p
t ); t =

6



1; : : : ; T : The bootstrap samples ("�t ) constructed as such will, in particular, satisfy E�

"�t = 0 and

E�"�t "
�

t =
~�.9

Next, we generate (u�it) recursively from ("�it) as

u�it = ~�
pi
i;1u

�

i;t�1 + � � �+ ~�
pi
i;pi

u�i;t�pi + "�it (17)

where (~�
pi
i;1; : : : ; ~�

pi
i;pi

) are the coeÆcient estimates from the �tted regression (9). Initialization of

(u�it) is unimportant for our subsequent theoretical development, though it may play an important

role in �nite samples.10 The coeÆcient estimates (~�
pi
i;1; : : : ; ~�

pi
i;pi

) used in (17) may be obtained from

estimating (9) by the Yule-Walker method instead of the OLS. The two methods are asymptotically

equivalent. However, in small samples the Yule-Walker method may be preferred to the OLS, since

it always yields an invertible autoregression, thereby ensuring the stationarity of the process (u�it).

See Brockwell and Davis (1991, Sections 8.1 and 8.2). However, the probability of having the

noninvertibility problem in the OLS estimation becomes negligible as the sample size increases.

Finally, obtain (y�it) by taking partial sums of (u�it), viz., y
�

it = y�i0 +
Pt

k=1 u
�

ik with some initial

value y�i0. Notice that the bootstrap samples (y�it) are generated with the unit root imposed. The

samples generated according to the unrestricted regression (1) will not necessarily have the unit root

property, and this will make the subsequent bootstrap procedure inconsistent as shown in Basawa

et al (1991). The choice of the initial value y�i0 does not a�ect the asymptotics as long as it is

stochastically bounded. Therefore, we simply set it equal to zero for the subsequent analysis in this

section.

To construct the bootstrapped tests, we consider the following bootstrap version of the augmented

autoregression (5) which was used to construct the sample test statistics

4y�it = �iy
�

i;t�1 +

piX
k=1

�i;k4y�i;t�k + "�it (18)

and write this in matrix form as

4y� = Y �

` �+X�

p�p + "� (19)

where the variables, y�, Y �

` , X
�

p and "�, are de�ned with the bootstrapped samples in the exactly

same manner as their original sample counterparts y, Y`, Xp and " given below (6).

We test for the unit root hypothesis �= 0 in (19), using the bootstrap versions of the F -type

tests that are de�ned analogously as the sample F -type tests considered earlier in (7) and (8). The

bootstrap GLS and OLS based F -tests are constructed from the GLS and OLS estimators of � in

the bootstrap augmented AR regression (19), and are given explicitly as

F �

GT
= A�0

GT
B��1
GT

A�
GT
; F �

OT
= A�0

OT
M��1

FOT
A�
OT

(20)

where the components, A�
GT
, B�

GT
, A�

OT
, andM�

FOT
, are de�ned analogously as their sample counter-

parts, AGT , BGT , AOT and MFOT , given below (7) and (8). They are exactly the same except that

the bootstrap samples, Y �

` , X
�

p and "�, are used in the places of their original sample counterparts,

Y`, Xp and ".

9Of course, we may resample "�it's individually from the ~"
pi
it
's for i = 1; : : : ;N and t = 1; : : : ;T . In this case,

preserving the original correlation structure among the cross-sectional units needs more care. We basically need to pre-

whiten ~"
pi
it 's before resampling, and then re-color the resamples to recover the correlation structure. More speci�cally,

we �rst pre-whiten ~"
pi
it 's by pre-multiplying ~��1=2 to ~"

p
t = (~"

p1
1t ; : : : ; ~"

pN
Nt )

0, for t = 1; : : : ;T . Next, generate "�it's by

resampling from the pre-whitened ~"
pi
it 's, and then re-color them by pre-multiplying ~�1=2 to "

�
t = ("�

1t; : : : ; "
�
Nt)

0 to

restore the original dependence structure.
10We may use the �rst pi-values of (uit) as the initial values of (u

�
it). The bootstrap samples (u�it) generated as

such, however, may not be stationary processes. Alternatively, we may generate a larger number, say T +M , of (u�it)

and discard �rst M-values of (u�it). This will ensure that (u
�
it) become more stationary. In this case the initialization

becomes unimportant, and we may therefore simply choose zeros for the initial values.
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We note that the bootstrap F -statistics F �

GT
and F �

OT
given in (20) also involve the covariance

matrix estimator ~�, which is de�ned below (10). The estimate ~� is the population parameter for the

bootstrap samples ("�t ), which corresponds to � for the original samples ("t). We may of course use

the bootstrap estimate ~��, say, for the construction of the statistics F �

GT
and F �

OT
for each bootstrap

iteration. The two versions of the bootstrap tests are asymptotically equivalent at least for the �rst

order asymptotics, and we use ~� in the construction of the bootstrap tests for convenience.11

The bootstrap K-statistics are constructed from the bootstrap samples in the analogous manner

in which the sample K-statistics are de�ned in (11) and (12). They are de�ned as

K�

GT
= (A�

GT
:� 1f�̂�

GT
� 0g)0B��1

GT
(A�

GT
:� 1f�̂�

GT
� 0g) (21)

K�

OT
= (A�

OT
:� 1f�̂�

OT
� 0g)0M��1

FOT
(A�

OT
:� 1f�̂�

OT
� 0g) (22)

where �̂�
GT

= B��1
GT

A�
GT

and �̂�
OT

= B��1
OT

A�
OT

are the bootstrap counterparts to the GLS and OLS

estimators �̂GT and �̂OT estimated from the sample regression (6).

The bootstrap t-statistics are also constructed in an analogous manner as we constructed the

sample t-statistics, tGT and tOT , in Section 2.1. Thus, we consider the homogeneous panel of the

bootstrap samples, with �1 = � � � = �N = � imposed, and compute the t-statistics from the corre-

sponding bootstrap augemented AR, which is written in matrix form as

4y� = y�`�+X�

p�p + "� (23)

The variables appearing in the above regression are de�ned in the same way as in the augmented AR

in matrix form for the bootstrap heterogeneous model (19), except that here we have an (NT � 1)-

vector y�` = (y�0`;1; : : : ; y
�0

`;N)
0 in the place of the (NT � N)-matrix Y �

` and the parameter � is now a

scalar instead of an (N � 1)-vector.

The bootstrapped GLS and OLS based t-statistics are based on the GLS and OLS estimator of

� in the homogeneous augmented AR (23), and are given by

t�
GT

= a�
GT
b
��1=2
GT ; t�

OT
= a�

OT
M

��1=2
tOT (24)

where a�
GT
, b�

GT
, a�

OT
, and M�

tOT
are constructed from the bootstrap samples y�` , X

�

p and "�, and

de�ned in the same manner as their sample counterparts, aGT , bGT , aOT andMtOT , given below (14).

We now outline how our bootstrap tests can be implemented in practice. For illustration, we

consider the boostrap test F �

GT
. To implement the test, we repeat the bootstrap sampling for the

given original sample and obtain c�
T
(�) such that P� fF �

GT
� c�

T
(�)g = � for any prescribed size level

�. The bootstrap test F �

GT
rejects the unit root null hypothesis if FGT � c�

T
(�): In Section 3.2 below,

it will be shown under appropriate conditions that the bootstrap panel unit root tests considered

here are asymptotically valid, i.e., they have asymptotic size �.

3. Statistical Theories

3.1 Limit Theories for Panel Unit Root Tests

It is well known that an invariance principle holds for a partial sum process of ("t) de�ned in (3)

under Assumption 1. That is,

1p
T

[T �]X
t=1

"t !d B (25)

11The bootstrap tests based on the bootstrap estimate ~�� may be better for higher order asymptotics, since they

more closely mimic the sample statistics than the bootstrap tests based on the population parameter ~�. The statistics

considered in the paper are, however, non-pivotal and therefore the higher order asymptotics are irrelevant here.
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as T!1, where B = (B1; : : : ; BN)
0 is an N-dimensional Brownian motion with covariance matrix

�, and [x] denotes the maximum integer which does not exceed x.

For the development of our asymptotics, we may conveniently use the Beveridge-Nelson repre-

sentation for (uit) given in (2) as

uit = �i(1)"it + (�ui;t�1 � �uit) (26)

where �uit =
P

1

k=0 ��i;k"i;t�k with ��i;k =
P

1

j=k+1 �i;j . Under our condition in Assumption 2, we

have
P

1

k=0 j��i;k j < 1 [see Phillips and Solo (1992)] and therefore (�uit) is well de�ned both in a.s.

and Lr sense [see Brockwell and Davis (1991, Proposition 3.1.1)].

Under the unit root hypothesis �1= � � �=�N = 0, we may now write

yit = �i(1)wit + (�ui0 � �uit) (27)

where wit =
Pt

k=1 "ik. Consequently, (yit) behaves asymptotically as the constant �i(1) multiple of

(wit). Note that (�uit) is stochastically of smaller order of magnitude than (wit), and therefore will

not contribute to our limit theory.

Let �ij and �
ij denote, respectively, the (i; j)-elements of the covariance matrix � and its inverse

��1. The limit theories for the F -type tests, FGT and FOT de�ned in (7) and (8), are given in

Theorem A.1 Under Assumptions 1 { 3, we have

(a) FGT !d Q
0

AG
Q�1
BG

QAG (b) FOT !d Q
0

AO
Q�1
MFO

QAO

as T !1, where

QAG =

0
BBBBBBB@

�1(1)

NX
j=1

�1j
Z 1

0

B1dBj

...

�N(1)

NX
j=1

�Nj
Z 1

0

BNdBj

1
CCCCCCCA
; QAO =

0
BBBBB@

�1(1)

Z 1

0

B1dB1

...

�N(1)

Z 1

0

BNdBN

1
CCCCCA

QBG =

0
BBBBB@

�11�1(1)
2

Z 1

0

B2
1 : : : �1N�1(1)�N(1)

Z 1

0

B1BN

...
...

...

�N1�N(1)�1(1)

Z 1

0

BNB1 : : : �NN�N(1)
2

Z 1

0

B2
N

1
CCCCCA

and

QMFO
=

0
BBBBBBB@

�11�1(1)
2

Z 1

0

B2
1 : : : �1N�1(1)�N(1)

Z 1

0

B1BN

...
...

...

�N1�N(1)�1(1)

Z 1

0

BNB1 : : : �NN�N(1)
2

Z 1

0

B2
N

1
CCCCCCCA

We note that the limit theories provided in Theorem A.1 and all of our subsequent asymptotic results

are derived for non-random pi's which increase with the sample size. In practice, however, we have

to estimate pi from the data using an order selection criteria such as AIC or BIC. The AIC (BIC)
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rule selects pi which minimizes the quantity log �̂2
T
+2pi=T (log �̂2

T
+ pi log T=T ). Following the lines

in Park (1999), we may indeed show that our limit theories, including the bootstrap consistency

results in the next section, continue to hold even for the estimated lag order pi via AIC or BIC, if

we modify our Assumption 3 as pi = o((T= log(T ))1=2).

The limit distributions of the FGT and FOT are nonstandard and depend heavily on the nuisance

parameters that de�ne the cross-sectional dependency and the heterogeneous serial dependence.

Therefore, it is impossible to perform inference based directly on the tests FGT and FOT .

The limit distributions of the K-statistics can be easily obtained in a manner similar to that

used to derive the limit theories for the F -type tests, and are given in

Corollary A.1 Under Assumptions 1 { 3, we have

(a) KGT !d (QAG :� 1fQ�1
BG

QAG � 0g)0Q�1
BG

(QAG :� 1fQ�1
BG

QAG � 0g)
(b) KOT !d (QAO :� 1fQ�1

BO
QAO � 0g)0Q�1

MFO
(QAO :� 1fQ�1

BO
QAO � 0g)

as T !1, where

QBO =

0
BBBBB@

�1(1)
2

Z 1

0

B2
1 : : : �1(1)�N(1)

Z 1

0

B1BN

...
...

...

�N(1)�1(1)

Z 1

0

BNB1 : : : �N(1)
2

Z 1

0

B2
N

1
CCCCCA

and the terms QAG ; QBG ; QAO and QMFO
are de�ned in Theroem A.1.

As can be seen clearly from the above Corollary, the limit distributions of the K-tests are also

nonstandard and depend heavily on the nuisance parameters.

In the following theorem we present the limit theories for the tGT and tOT tests.

Theorem A.2 Under Assumptions 1 { 3, we have

(a) tGT !d QaGQ
�1=2

bG
(b) tOT !d QaOQ

�1=2

MtO

as T !1, where

QaG =

NX
i=1

NX
j=1

�ij
Z 1

0

BidBj ; QbG =

NX
i=1

NX
j=1

�ij
Z 1

0

BiBj

and

QaO =

NX
i=1

�i

Z 1

0

BidBi; QMtO
=

NX
i=1

NX
j=1

�ij�i�j

Z 1

0

BiBj

The limit processes QaG , QbG , QaO QMtO
appearing in the limit distributions of tGT and tOT are the

sums of the individual elements in the corresponding limit processes QAG , QBG , QAO and QMFO

de�ned in Theorem A.1 for the limit distributions of the tests FGT and FOT that are developed for the

heterogenous panels.12 The limit distributions of the t-statistics tGT and tOT are also nonstandard

12Levin and Lin (1992,1993) considers t-statistics for homogeneous panels under cross-sectional independency. Con-

sequently, they can applyN -asymptotics after the limit as T tends to in�nity is taken, and derive the limit distribution

that is the standard normal. Their theory, however, does not extend to our statistics, since we allow for dependency

across cross-sectional units.
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and su�er from nuisance parameter dependency, as in the cases with the F -tests and K-statistics.

Hence it is not possible to use these statistics for inference as they stand.

The limit theories for the tests given in Theorem A.1, Corollary A.1 and Theorem A.2 extend

easily to the models with heterogeneous �xed e�ects and individual time trends such as those given

in (15) and (16), and are given similarly with the following demeaned and detrended Brownian

motions

B
�
i (s) = Bi(s)�

Z 1

0

Bi(t)dt

and

B�
i (s) = Bi(s) + (6s� 4)

Z 1

0

Bi(t)dt� (12s� 6)

Z 1

0

tBi(t)dt

in the places of the Brownian motions Bi(s) for i = 1; : : : ;N .

3.2 Limit Theories for Bootstrap Panel Unit Root Tests

Here, we establish the consistency of the bootstrapped tests introduced earlier in Section 2.2 and

show the asymptotic validity of the tests based on bootstrapped critical values. We will use the

symbol o�p(1) to signify the bootstrap convergence in probability. For a sequence of bootstrapped

random variables Z�

T
, for instance, Z�

T
= o�p(1) in P imply that

P�fjZ�

T
j > Æg ! 0 in P

for any Æ > 0, as T !1. Similarly, we will use the symbol O�

p(1) to denote the bootstrap version of

the boundedness in probability. Needless to say, the de�nitions of o�p(1) and O
�

p(1) naturally extend

to o�p(cT ) and O�

p(cT ) for some nonconstant numerical sequence (cT ).

To develop our bootstrap asymptotics, it is convenient to obtain the Beveridge-Nelson represen-

tations for the bootstrapped series (u�it) and (y�it) similar to those for (uit) and (yit) given in (26)

and (27) in the previous section. Let ~�i(1) = 1�Ppi
k=1 ~�

pi
i;k. Then it is indeed easy to get

u�it =
1

~�i(1)
"�it +

piX
k=1

Ppi
j=k ~�

pi
i;j

~�i(1)
(u�i;t�k � u�i;t�k+1) = ~�i(1)"

�

it + (�u�i;t�1 � �u�it)

where ~�i(1) = 1=~�i(1) and �u�it = ~�i(1)
Ppi

k=1(
Ppi

j=k ~�
pi
i;j)u

�

i;t�k+1, and therefore,

y�it =

tX
k=1

u�ik = ~�i(1)w
�

it + (�u�i0 � �u�it)

where w�it =
Pt

k=1 "
�

ik. From this we may easily derive the limit theories given in the following

lemma and Lemma B2 in Appendix that are required for the derivation of the limit distributions

for our sieve bootstrap panel unit root tests.

Lemma B1 Under Assumptions 1 { 3, we have

(a)
1

T

TX
t=1

y�i;t�1"
�

jt = ~�i(1)
1

T

TX
t=1

w�i;t�1"
�

jt + o�p(1)

(b)
1

T
2

TX
t=1

y�i;t�1y
�

j;t�1 = ~�i(1)~�j(1)
1

T
2

TX
t=1

w�i;t�1w
�

j;t�1 + o�p(1)

We introduce the notation !d� for bootstrap asymptotics. For a sequence of bootstrapped

statistic (Z�

T
), we write

Z�

T
!d� Z a.s.
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if the conditional distribution of (Z�

T
) weakly converges to that of Z a.s. as T ! 1. Here it

is assumed that the limiting random variable Z has a distribution which does not depend on the

original sample realization. We now present the limit theories for the bootstrap tests. The limit

theories for the bootstrapped F -tests (F �

GT
,F �

OT
), K-tests (K�

GT
,K�

OT
) and t-tests (t�

GT
,t�
OT
) are given

respectively in Theorem B.1, Corollary B.1 and Theorem B.2 below.

Theorem B.1 Under Assumptions 1 { 3, we have as T !1,

(a) F �

GT
!d� Q

0

AG
Q�1
BG

QAG (b) F �

OT
!d� Q

0

AO
Q�1
MFO

QAO

in P, where QAG , QBG , QAO and QMFO
are de�ned in Theorem A.1.

Corollary B.1 Under Assumptions 1 { 3, we have as T !1,

(a) K�

GT
!d� (QAG :� 1fQ�1

BG
QAG � 0g)0Q�1

BG
(QAG :� 1fQ�1

BG
QAG � 0g)

(b) K�

OT
!d� (QAO :� 1fQ�1

BO
QAO � 0g)0Q�1

MFO
(QAO :� 1fQ�1

BO
QAO � 0g)

in P, where QAG , QBG , QAO , QMFO
and QBO are de�ned in Theorem A.1 and Corollary A.1.

Theorem B.2 Under Assumptions 1 { 3, we have as T !1,

(a) t�
GT
!d� QaGQ

�1=2

bG
(b) t�

OT
!d� QaOQ

�1=2

MtO

in P, where QaG , QbG , QaO and QMtO
are de�ned in Theorem A.2.

The results in Theorem B.1, Corollary B.1 and Theorem B.2 show that the bootstrap tests, (F �

GT
,

F �

OT
), (K�

GT
,K�

OT
), and (t�

GT
,t�
OT
) have the same limit distributions as their sample counterparts,

(FGT ,FOT ), (KGT ,KOT ) and (t�
GT
,t�
OT
), which are given respectively in Theorem A.1, Corollary A.1

and Theorem A.2 in Section 3.1. This establishes the asymptotic validity of the boostrap tests F �

GT
,

F �

OT
, K�

GT
, K�

OT
, t�

GT
and t�

OT
. We refer to Chang and Park (1999) for a detailed discussion on the

issue of asymptotic validity of bootstrap tests in general.

Our bootstrap theories developed here easily extend to the panel unit root tests in models with

heterogeneous �xed e�ects and individual time trends, such as those introduced in (15) and (16). It

is straightforward to establish the bootstrap consistency for the tests constructed from the demeaned

and detrended series, using the results obtained in this section. The bootstrap tests are therefore

valid and applicable also for the models with heterogeneous �xed e�ects and individual deterministic

trends.

4. Simulations

We conduct a set of simulations to investigate the �nite sample performance of the bootstrap panel

unit root tests, F �

GT
, F �

OT
, K�

GT
, K�

OT
, t�

GT
and t�

OT
, proposed in the paper. For the simulations, we

consider two classes of models: (M) the models with heterogeneous �xed e�ects only and (T) the

models with individual time trends as well as �xed e�ects. More speci�cally, we consider the models

given in (15) and (16) with the series (yit) de�ned by (1). For each class of models, errors (uit) in

(1) are generated as either AR(1) or MA(1) processes, viz.,

(AR) uit = �iui;t�1 + "it (MA) uit = "it + �i"i;t�1

The innovations "t = ("1t; : : : ; "Nt)
0 that generate ut = (u1t; : : : ; uNt)

0 are drawn from an N-

dimensional multivariate normal distribution with mean zero and covariance matrix �, which will

be speci�ed below. The simulation model for case (MA) is generated from an MA(1) process (uit),
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which can be represented as an in�nite order AR process. Using the lag order pi selected by the

modi�ed AIC rule suggested by Ng and Perron (2000, 2001) with the maximum lag order 1013,

we approximate (uit) by an AR(pi) process as in (9). The approximated autoregression is then

estimated by the OLS method.14

The AR and MA coeÆcients, �i's and �i's, used in the generation of the errors (uit) are drawn

randomly from the uniform distribution. The location and range of the distribution determine

the characteristics of the data generating process. The location determines the amount of serial

correlation allowed in the individual series, while the range prescribes the degree of heterogeneity

allowed in the panel. It turns out that both the location and range of the distribution critically

a�ect the �nite sample performances of the tests considered in the paper. For our simulations, we

consider the following six cases:

DGP Cases Parameters

AR A1 �i � U(�0:8; 0:8)
A2 �i � U(0:2; 0:4)

A3 A1 with independent "it's

MA M1 �i � U(�0:8;�0:4)
M2 �i � U(�0:4; 0:4)
M3 �i � U(0:4; 0:8)

Cases (A1) and (A2) are considered to allow respectively for wide and narrow ranges for the AR

errors. Case (A1) allows the errors to be quite heterogeneous, and thus the t� statistics designed

for homogeneous panels are expected to perform poorly in this case. Case (A2) represents panels

with errors which are more homogeneous.15 Case (A3) is considered to see how the tests perform

when individual dynamics are generated by independent innovations. For the models driven by

MA errors, we looked at three di�erent cases. Case (M1) is considered to see how the tests behave

in the presence of large negative MA roots. Many previous simulations for the univariate model

show that the unit root tests yield severe over-rejections in this case. Case (M2) is considered to

examine the performances of the tests when mild serial correlations are allowed. We do not expect

signi�cant size distortsions in this case. Case (M3) is included to see how the tests perform in the

other extreme where the errors have large MA coeÆcients.16 All of the above speci�cations for the

serial correlations are used for both classes of models (M) and (T).

The parameter values for the (N�N) covariance matrix � = (�ij) are also randomly drawn, but

with particular attention. To ensure that � is a symmetric positive de�nite matrix and to avoid the

near singularity problem, we generate � via following steps:

(1) Generate an (N�N) matrix U from Uniform[0,1].

(2) Construct from U an orthogonal matrix H = U(U 0U)�1=2.

13This procedure was suggested by an Associate Editor to whom I am very grateful. Indeed the use of this selection

rule improved our simulation results relative to the previous results appeared in an earlier version of this paper, which

are based upon the usual AIC rule.
14The Yule-Walker method is not used here due to its �nite sample bias problem, which may outweigh the bene�ts

of ensuring stationarity.
15Case (A2) is considered mainly to relate to previous simulation studies for panel unit root tests. See Maddala

and Wu (1996) and Im, Pesaran and Shin (1997). It seems, however, that the location of distribution in AR models

does not a�ect the performances of the tests signi�cantly.
16We also tried the case where the MA coeÆcient is drawn from the uniform distribution with a wider range,

Uniform(�0:8;0:8). However, the results were not informative since they were mixture of quite drastically di�erent

results obtained from di�erent locations chosen randomly from such a wide range covering both extremely large

negative and positive MA roots.
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(3) Generate a set of N eigen values, �1; : : : ; �N . Let �1=r > 0 and �N=1 and draw �2; : : : ; �N�1
from Uniform[r,1].

(4) Form a diagonal matrix � with (�1; : : : ; �N) on the diagonal.

(5) Construct the covariance matrix � as a spectral representation � = H�H 0.

The covariance matrix constructed this way will surely be symmetric and nonsingular with eigen-

values taking values from r to 1. We set the maximum eigenvalue at 1 since the scale does not

matter. The ratio of the minimum eigenvalue to the maximum is therefore determined by the same

parameter r. The covariance matrix becomes singular as r tends to zero, and becomes spherical as

r approaches to 1. For the simulations, we set r at r = 0:1.17

For the test of the unit root hypothesis, we set �i = 0 for all i = 1; : : : ;N , and investigate

the �nite sample sizes in relation to the corresponding nominal test sizes. To examine the rejec-

tion probabilities of the tests under the alternative of stationarity, we generate �i's randomly from

Uniform(�0:8; 0). The model is thus heterogenous under the alternative. The �nite sample perfor-
mance of the bootstrap tests are compared with that of the t-bar statistic by Im, Pesaran and Shin

(1997), which is based on the average of the individual t-statistics computed from the sample ADF

regressions (5) with mean and variance modi�cations. More explicitly, the t-bar statistic is de�ned

as

t-bar =

p
N(�tN �N

�1
P

N

i=1E(ti; pi; �i;1; : : : ; �i;pi))q
N
�1
P

N

i=1 var(ti; pi; �i;1; : : : ; �i;pi)

where ti is the t-statistic for testing �i = 0 for the i-th sample ADF regression (5), and �tN =

N
�1
P

N

i=1 ti. The values of the expectation and variance, E(ti) and var(ti), for each individ-

ual ti depend on T , the lag order pi and the coeÆcients on the lagged di�erences �i;k 's, and

are computed via simulations from independent normal samples assuming �i;1 = � � � = �i;pi =

0. Table 2 in Im, Pesaran and Shin (1997) tabulates the values of E(ti) and var(ti) for T =

5; 10; 15; 20; 25; 30; 40; 50; 60; 70; 100 and for pi = 1; : : : ; 8. When the AR order pi chosen by the

selection rule is greater than 8, we replace it by 8 for the construction of the t-bar test since the

mean and variance modi�cations are available only for pi's upto 8. However, for the construction of

our bootstrap tests, we use the original order selected by the rule.

The panels with the cross-sectional dimensions N= 5; 10 and the time series dimension T = 100

are considered for the 5% size test. Since we are using random parameter values, we simulate 20

times for each case and report the ranges of the �nite sample performances of the tests. Each

simulation run is carried out with 1,000 simulation iterations, each of which uses bootstrap critical

values computed from 500 bootstrap repetitions. The simulation results for the t-bar statistic and

our bootstrap tests F �

OT
, F �

GT
, K�

OT
, K�

GT
, t�

OT
and t�

GT
for the models (M) with heterogeneous �xed

e�ects are reported in Tables MS.A1-MP.M3. Tables MS.A1(A2,A3) and MP.A1(A2,A3) report,

respectively, the �nite sample sizes and powers of the tests for case A1(A2,A3) with the AR errors

generated by the DGP de�ned with the parameters given in A1(A2,A3). Tables MS.M1(M2,M3)

and MP.M1(M2,M3) report the �nite sample sizes and powers for case M1(M2,M3) with the MA

errors generated by the DGP M1(M2,M3). Similarly, Tables TS.A1-TP.M3 report the �nite sample

sizes and powers of the tests for the models (T) with individual time trends. For each statistic, we

report the minimum, mean, median and maximum of the rejection probabilities under the null and

under the alternative hypotheses.

In general, the t-bar test su�ers from serious size distortions for both models (M) and (T)

and for all speci�cations of serial correlations considered with cross-sectional dependency. The size

distortions in the models driven by MA errors or with time trends are much more severe than those

17Our bootstrap tests do not seem to depend on the the value of r, but the t-bar statistic does. Though we do

not report the details, we observe from a set of simulations that the t-bar tends to have higher rejection probabilities

when r is close to 0, relative to the case where � is nearly spherical with r = 0:99.
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in the models driven by AR errors or with �xed e�ects only.18 In particular, it su�ers from huge

upward size distortions for case (M1) with large negative MA roots. As can be seen from Table

MS.M1 for the models (M) with heterogeneous �xed e�ects, the average size of the t-bar tests for

the 5% test is 45% for N=5, and increases to 66% for the larger N=10. For cases (M2) and (M3),

the t-bar continues to over-reject for both N=5,10, though the magnitude of the distortions is much

smaller than in case (M1). See Tables MS.M2 and MS.M3. The t-bar has similar patterns of size

distortions for the models (T) with time trends. However, the degree of distortions are noticeably

magni�ed in this case, especially for the cases generated by MA errors. For instance, as can be

seen from Table TS.M1, the upward distortion in case (M1) is now enormous, and it gets worse as

N increases. For the 5% test, the average size of the t-bar test is 76% for the smaller N=5 and

increases to 94% when the larger N = 10 is used.

On the other hand, the �nite sample sizes of the bootstrap tests are overall quite close to the

nominal test sizes in most of the cases. For the cases with AR errors, all bootstrap tests have very

good size properties for both classes of models (M) and (T), as can be seen from Tables MS.A1(A2)

and TS.A1(A2). Our bootstrap tests also have reasonably good sizes for the cases with MA errors,

except for case (M1). In this case, all bootstrap tests also su�er from upward size distortions;

however, the degree of the distortions in our bootstrap tests is not comparable to that of the t-bar

test. Ours is much less severe than theirs.19 See Tables MS.M1 and TS.M1.

We now turn to �nite sample powers of the tests. In general, it seems that our bootstrap tests

perform satisfactorily in all cases we consider in the paper. It is, however, not easy to directly

compare power performances of our tests with those of the t-bar using the computed rejection

probabilities, since in many cases the t-bar test has signi�cant size distortions. Nonetheless, we can

make straightforward comparisons in some cases. As can be seen from Tables MS.A and MP.A for

cases A1 and A2 for the models with �xed e�ects, the GLS-based bootstrap tests, F �

GT
and K�

GT
,

perform clearly better than the t-bar test even in the presence of the upward size distortions in the

t-bar test. The bootstrap tests appear to perform quite well relative to the t-bar test also for all

other cases, once we take into account the upward size distortions in the t-bar test. Our bootstrap

tests F � and K� seem to yield better powers than the t-bar test in most of the cases. There are,

however, cases where the t� tests appear less powerful than the t-bar. The performance of the t�

tests varies with the degree of heterogeneity allowed in the model. The �nite sample powers of

all tests are lower for the models (T) with time trends, compared with the models (M) with �xed

e�ects only. We expect that the eÆcient GLS-detrending suggested by Elliot, Rothenberg and Stock

(1996) improves the power properties of our bootstrap tests in both models. However, it is not used

here to give a fair ground to the t-bar test, whose critical values are available only for the usual

OLS-detrending.

We now discuss the relative performances among our bootstrap tests. The GLS-based tests

generally perform better than their OLS counterparts in terms of both sizes and powers. The GLS-

based tests F �

GT
and K�

GT
have better sizes for all cases except (M1) and are more powerful than

their OLS counterparts F �

OT
and K�

OT
. This is even more evident for the models (T) with individual

time trends. For the t� tests, however, this is not always the case. The t�
GT

seems to have better

sizes than t�
OT

in most of the cases, but it is more powerful than t�
OT

only for the smaller N . See

the discussion on the t� test below. Overall, the F � and K� tests perform better than the t� test in

terms of both sizes and powers, except for the cases described below.

18In the models with independent AR errors as in case A3, the t-bar performs quite well as expected. However,

even in such cases with cross-sectional independence, the t-bar test starts to over-reject as we introduce time trends

and the upward distortions become more obvious as N increases.
19The poor size performances of the tests in case (M1) for both models with �xed e�ects and time trends go in line

with the well known size problems of the univariate unit root tests in models with large negative MA roots. It is also

observed that bootstrap tests reduce, though not completely, the size distortions in such cases. See Chang and Park

(1999).
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The t-type tests are one-sided tests constructed for homogenous panels. Hence, for our simulation

models with the alternatives drawn heterogeneously for each individual unit, it is well expected that

the t� tests will be less powerful than the F � and K� tests that are designed for heterogeneous

panels. Indeed, when the models allow substantial amount of heterogeneity, as in cases (A1) and

(A3), the t� tests have lower power and exhibit larger variability. However, when the models are

modestly heterogeneous, as in case (A2), the t� tests become much less variable and more powerful,

almost comparable to the F � and K� tests. For the cases with MA errors, the models considered

here are not drastically heterogeneous, and consequently the powers of the t� tests are reasonably

good. We also note that the OLS based t-statistic t�
OT

is more powerful than its GLS couterpart t�
GT

when the larger N=10 is used, which is not observed for the F � and K� tests.

The K-statistics are proposed as an alternative to the two-sided F -type test to come up with

more powerful tests for the unit roots against the one-way alternative of stationarity. The simulation

results in Tables MP and TP, however, show that the improvement the K-statistics make over

the F -type tests are insigni�cant. The �nite sample distributions of �̂GT and �̂OT , upon which

the modi�cations for the K-statistics are made, are indeed skewed to the left so much that the

modi�cations do not have actual e�ect. For better results, we thus need to correct the biases in

the distributions of �̂GT and �̂OT before applying the modi�cations given in the equation preceding

(11). This can be implemented in practice by carrying out a nested bootstrap, the �rst step of

which involves the bootstrap corrections for the biases in �̂GT and �̂OT . We do not pursue this in

the present paper due to the computation time, but will report in a future work.

5. Conclusion

There has been much recent empirical and theoretical econometric work on models with nonstation-

ary panel data. In particular, much attention has been paid to the development and implementation

of the panel unit root tests which have been used frequently to test for various covergence theories,

such as growth covergence theories and purchasing power parity hypothesis. A variety of tests have

been proposed, including the tests proposed by Levin and Lin (1993) and Im, Pesaran and Shin

(1997) that appear to be most commonly used. All the existing tests, however, assume the inde-

pendence across cross-sectional units, which is quite restrictive for most of economic panel data we

encounter. Cross-sectional dependency seems indeed quite apparent for most of interesting panel

data.

In the paper, we investigate various unit root tests for panel models which explicitly allow for the

cross-correlation across cross-sectional units as well as heterogeneous serial dependence. The limit

theories for the panel unit root tests are derived by passing the number of time series observations

T to in�nity with the number of cross-sectional units N �xed. As expected the limit distributions of

the tests are nonstandard and depend heavily on the nuisance parameters, rendering the standard

inferential procedure invalid. To overcome the inferential diÆculty of the panel unit root tests in

the presence of cross-sectional dependency, we propose to use the bootstrap method. Limit theories

for the bootstrap tests are developed, and in particular their asymptotic validity is established by

proving the consistency of the boostrap tests. The simulations show that the bootstrap panel unit

root tests perform well in �nite samples relative to the t-bar statistic by Im, Pesaran and Shin

(1997).

6. Appendix: Mathematical Proofs

The following lemmas provide asymptotic results for the sample moments appearing in the sample

test statistics FGT , FOT , KGT , KOT , tGT and tOT de�ned in (7), (8), (11), (12) and (14).
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Lemma A1 Under Assumptions 1 { 3, we have

(a)
1

T

NX
t=1

yi;t�1"
pj
jt = �i(1)

1

T

TX
t=1

wi;t�1"jt + op(1), for all i; j = 1; : : : ;N

(b)
1

T
2

TX
t=1

yi;t�1yj;t�1 = �i(1)�j(1)
1

T
2

TX
t=1

wi;t�1wj;t�1 + op(1), for all i; j = 1; : : : ;N

(c)
1

T

TX
t=1

"
p
t "

p0
t =

1

T

TX
t=1

"t"
0

t + op(1)

Proof of Lemma A1

Part (a) The stated results follow immediately if we apply the results in Lemma 3.1 (a) of Chang

and Park (2001) to each (i; j) pair, for i; j = 1; : : : ;N .

Part (b) The stated result follows directly from Phillips and Solo (1992).

Part (c) Let QT = T
�1
P

T

t=1 "
p
t "

p0
t � T

�1
P

T

t=1 "t"
0

t. Then for each (i; j)-element of Q, we have

QT;ij =
1

T

TX
t=1

("
pi
it � "it)"

pj
jt +

1

T

TX
t=1

"it("
pj
jt � "jt) = op(p

�s
i ) + op(p

�s
j )

due to Lemma 3.1 (c) in Chang and Park (2001). Now the stated result is immediate.

Lemma A2 Under Assumptions 1 { 3, we have

(a)








 
1

T

TX
t=1

x
pi
it x

pi0
it

!
�1






 = Op(1), for all pi and i = 1; : : : ;N

(b)

�����
TX
t=1

x
pi
it yj;t�1

����� = Op(Tp
1=2
i ), for all i; j = 1; : : : ;N

(c)

�����
TX
t=1

x
pi
it "

pj
jt

����� = Op(T
1=2p

1=2
i ) + op(Tp

1=2
i p�sj ), for all i; j = 1; : : : ;N .

Proof of Lemma A2 The stated result in Part (a) follows directly from the application of the

result in Lemma 3.2 (a) of Chang and Park (2001) for each i = 1; : : : ;N , and those in Parts (b) and

(c) are easily obtained using the results in Lemma 3.2 (b) and (c) of the aforementioned reference for

each (i; j) pair for i; j = 1; : : : ;N , with some obvious modi�cations with respect to the heterogeneous

orders pi's of the AR approximations involved.

Proof of Theorem A.1

Part (a) We begin by examining the stochastic orders of the component sample moments appearing

in AGT and BGT de�ned below (8). Let �(�) denote eigenvalues of a matrix. We have

�min(~�
�1 
 IT )X

0

pXp � X 0

p(
~��1 
 IT )Xp

Notice that �min(~�
�1 
 IT ) = �min(~�

�1) and �min(~�
�1) = 1=�max(~�). Then we have

 
X 0

p(
~��1 
 IT )Xp

T

!
�1

� �max(~�)

�
X 0

pXp

T

��1
= Op(1) (28)
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since �max(~�) !p �max(�) < 1 and (T�1X 0

pXp)
�1 = Op(1) due to Lemma A2 (a). Moreover it

follows from Lemma A2 (b) that

X 0

p(
~��1 
 IT )Y` = Op(T �p

1=2) (29)

where �p = max
1�i�N

pi, and from Lemma A2 (c) that

X 0

p(
~��1 
 IT )"p = Op(T

1=2�p1=2) + op(T �p
1=2p�s) (30)

where p = min
1�i�N

pi. Notice that �p = p = o(T 1=2) as T!1 under Assumption 3.

It follows from (28), (29) and (30) that����Y 0

` (
~��1 
 IT )Xp

�
X 0

p(
~��1 
 IT )Xp

�
�1

X 0

p(
~��1 
 IT )"p

����
�

���Y 0

` (
~��1 
 IT )Xp

���




�X 0

p(
~��1 
 IT )Xp

�
�1





���X 0

p(
~��1 
 IT )"p

���
= op(T �pp

�s) +Op(T
1=2�p)

which implies

AGT

T
=

Y 0

` (
~��1 
 IT )"p

T
+ op(1) = QAGT + op(1) (31)

due to Lemma A1 (a), where

QAGT =

0
BBBBBBBB@

NX
j=1

~�1j�1(1)
1

T

TX
t=1

w1;t�1"jt

...
NX
j=1

~�Nj�N(1)
1

T

TX
t=1

wN;t�1"jt

1
CCCCCCCCA

where ~�ij denotes (i; j)-element of the covariance matrix estimate ~�.

Moreover, we have from (28) and (29) that����Y 0

` (
~��1 
 IT )Xp

�
X 0

p(
~��1 
 IT )Xp

�
�1

X 0

p(
~��1 
 IT )Y`

����
�

���Y 0

` (
~��1 
 IT )Xp

���




�X 0

p(
~��1 
 IT )Xp

�
�1





���X 0

p(
~��1 
 IT )Y`

��� = Op(T �p)

which, together with Lemma A1 (b) gives

BGT

T
2

=
Y 0

` (
~��1 
 IT )Y`

T
2

+ op(1) = QBGT + op(1) (32)

where

QBGT =

0
BBBBBBBB@

~�11�1(1)
2 1

T
2

TX
t=1

w2
1;t�1 � � � ~�1N�1(1)�N(1)

1

T
2

TX
t=1

w1;t�1wN;t�1

...
...

...

~�N1�N(1)�1(1)
1

T
2

TX
t=1

wN;t�1w1;t�1 � � � ~�NN�N(1)
2 1

T
2

TX
t=1

w2
N;t�1

1
CCCCCCCCA
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Using the asymptotic results in (31) and (32), we write

FGT =

�
AGT

T

�
0
�
BGT

T
2

�
�1�

AGT

T

�
= Q0

AGT
Q�1
BGT

QAGT + op(1)

Then the limit distribution of FGT follows immediately from the invariance principle given in (25).

Part (b) We have from Lemma A2 (b) and (c) that

X 0

pY` = Op(T �p
1=2); X 0

p"p = Op(T
1=2�p1=2) + op(T �p

1=2p�s) (33)

These together with (28) give��Y 0

`Xp(X
0

pXp)
�1X 0

p"p
�� � jY 0

`Xpj


(X 0

pXp)
�1


 ��X 0

p"p
�� = op(T �pp

�s) +Op(T
1=2�p)

which in turn gives
AOT

T
=

Y 0

` "p

T
+ op(1) = QAOT + op(1) (34)

due to Lemma A1 (a), where

QAOT =

0
BBBBBBBB@

�1(1)
1

T

TX
t=1

w1;t�1"1t

...

�N(1)
1

T

TX
t=1

wN;t�1"Nt

1
CCCCCCCCA

We have from (28) that

X 0

p(
~�
 IT )Xp � �max(~�)(X

0

pXp) = Op(T ) (35)

Also it follows from Lemma A2 (b) that X 0

p(
~�
 IT )Y` = Op(T �p

1=2).

Then we have
���Y 0

`Xp(X
0

pXp)
�1X 0

p(
~�
 IT )Y`

��� = Op(T �p) and���Y 0

`Xp(X
0

pXp)
�1X 0

p(
~�
 IT )Xp(X

0

pXp)
�1X 0

pY`

��� = Op(T �p)

which in turn give

MFOT

T
2

=
Y 0

` (
~�
 IT )Y`

T
2

+ op(1) = QMFOT
+ op(1) (36)

due to Lemma A1 (b), where

QMFOT
=

0
BBBBBBBB@

~�11�1(1)
2 1

T
2
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1;t�1 � � � ~�1N�1(1)�N(1)

1

T
2

TX
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w1;t�1wN;t�1

...
...

...

~�N1�N(1)�1(1)
1
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2

TX
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wN;t�1w1;t�1 � � � ~�NN�N(1)
2 1
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2

TX
t=1

w2
N;t�1

1
CCCCCCCCA

We now have from the results in (34) and (36) that

FOT =

�
AOT

T

�
0
�
MFOT

T
2

�
�1�

AOT

T

�
= Q0

AOT
Q�1
MFOT

QAOT + op(1)
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from which the stated result follows immediately.

Proof of Corollary A.1

Part (a) It follows from (31) and (32) that

T �̂GT =

�
BGT

T
2

�
�1�

AGT

T

�
= Q�1

BGT
QAGT + op(1)

which implies

1

T

�
AGT :� 1f�̂GT � 0g

�
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T
:� 1
�
�̂GT

T
� 0

��
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�
QAGT :� 1
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Q�1
BGT

QAGT � 0
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+ op(1)

Due to the above result and (32), we may write the KGT statistic given in (11) as

KGT =

�
1

T

�
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��0�BGT
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2
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+ op(1)

Now the stated result follows immediately from (25).

Part (b) From (28) and (33), we have
��Y 0

`Xp(X
0

pXp)
�1X 0

pY`
�� = Op(T �p); which together with

Lemma A1 (b) gives
BOT
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(37)

It follows from (34) and the above result that

T �̂OT =

�
BOT

T
2

�
�1�

AOT

T

�
= Q�1

BOT
QAOT + op(1)

and
1
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�
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QAOT :� 1

�
Q�1
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	�

+ op(1)

From this and the result in (36), we may express the statistic KOT given in (12) as

KOT =

�
1

T

�
AOT :� 1f�̂OT � 0g

��0�MFOT
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2
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�1�

1

T

�
AOT :� 1f�̂OT � 0g

��

=
�
QAOT :� 1

�
Q�1
BOT

QAOT � 0
	�

0

Q�1
MFOT

�
QAOT :� 1

�
Q�1
BOT

QAOT � 0
	�

+ op(1)

which is required for the stated result.
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Proof of Theorem A.2 The limit theories for the GLS and OLS based t-statistics tGT and tOT
de�ned in (14) can be derived in the similar manner as we did for the F -type tests FGT and FOT in

the proof of Theorem A.1. We just have to take into account that the lagged level variables come

in as an (NT � 1)-vector y` instead of the (NT � N)-matrix Y`.

Part (a) We begin by examining the sample moments appearing in aGT and bGT , de�ned below

(14). Since X 0

p(
~��1 
 IT )y` = Op(T �p

1=2) due to Lemma A2 (b), it follows from (28) and (30) that
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Then from the above results and Lemma A1 (a) and (b), it follows that
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We may now write tGT de�ned in (14) as follows

tGT =
aGT

T

�
bGT

T
2

�
�1=2

= QaGTQ
�1=2

bGT
+ op(1)

and the limit theory for tGT is directly obtained from applying the invariance principle in (25) to

QaGT and QbGT .

Part (b) Again, we �rst analyze the components aOT andMtOT , de�ned below (14), that constitute

the OLS based t-statistic tOT given in (14). Since

X 0

py` = Op(T �p
1=2) and X 0

p(
~�
 IT )y` = Op(T �p

1=2)

by Lemma A2 (b), we have from (35) that��Y 0

`Xp(X
0

pXp)
�1X 0

p"p
�� = op(T �pp

�s) +Op(T
1=2�p)���Y 0

`Xp(X
0

pXp)
�1X 0

p(
~�
 IT )Y`

��� = Op(T �p)���Y 0

`Xp(X
0

pXp)
�1X 0

p(
~�
 IT )Xp(X

0

pXp)
�1X 0

pY`

��� = Op(T �p)
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We now deduce from Lemma A1 (a) and (b) that

aOT

T
=

y0`"p

T
+ op(1) =

NX
i=1

1

T

TX
t=1

yi;t�1"
pi
it + op(1) = QaOT + op(1)

MtOT

T
2

=
y0`(

~�
 IT )y`

T
2

+ op(1) =

NX
i=1

NX
j=1

~�ij
1

T
2

TX
t=1

yi;t�1yj;t�1 + op(1) = QMtOT
+ op(1)

where

QaOT =

NX
i=1

�i(1)
1

T

TX
t=1

wi;t�1"it

QMtOT
=

NX
i=1

NX
j=1

~�ij�i(1)�j(1)
1

T
2

TX
t=1

wi;t�1wj;t�1

Then we have

tOT =
aOT

T

�
MtOT

T
2

�
�1=2

= QaOTQ
�1=2

MtOT
+ op(1)

from which the stated result follows immediately.

Proofs for the Bootstrap Asymptotics

In the following lemma, we use an operator norm for matrices: if C = (cij) is a matrix, then we

let kCk = maxx jCxj=jxj.
Lemma B2 Let x

�pi
it = (4y�i;t�1; : : : ;4y�i;t�pi)

0. Then we have

(a) E�








 
1

T

TX
t=1

x
�pi
it x

�pi0
it

!
�1






 = Op(1), for all i = 1; : : : ;N .

(b) E�

�����
TX
t=1

x
�pi
it y�j;t�1

����� = O(Tp
1=2
i ) a:s:, for all i; j = 1; : : : ;N .

(c) E�

�����
TX
t=1

x
�pi
it "�jt

����� = O(T 1=2p
1=2
i ) a:s:, for all i; j = 1; : : : ;N .

under Assumptions 1 { 3.

Proofs of Lemmas B1 and B2 The stated results follow directly from Lemmas 3.2 and 3.3 of

Chang and Park (1999), and thus omitted.

Proof of Theorem B.1 The proof here follows closely the lines of the proof of Theorem A.1,

using the bootstrap asymptotics established in Lemmas 1 and 2.

Part (a) From Lemma 2 (a), we have 
X�0

p (
~��1 
 IT )X

�

p

T

!
�1

� �max(~�)

�
X�0

p X
�

p

T

��1
= O�

p(1) (38)

which along with the results in Lemma B1 (b) and Lemma B2 (b) and (c) gives

A�
GT

T
= Y �0

` (~��1 
 IT )"
� + o�p(1) = QA�

GT
+ o�p(1) (39)
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in P under Assumptions 1 { 3, where QA�

GT
is de�ned similarly as QAGT in (31) with ~�i(1); w

�

it and

"�it in the places of �i(1); wit and "it. Similarly, we have from (38), Lemma B1 (b) and Lemma 2

(b) that
B�

GT

T
2

= Y �0

` (~��1 
 IT )Y
�

` + o�p(1) = QB�

GT
+ o�p(1) (40)

in P under Assumptions 1 { 3, analogously as before, where QB�

GT
is de�ned similarly as QBGT

given below (32) with ~�i(1) and w�it in the places of �i(1) and wit, respectively.

We now write the bootstrapped statistic F �

GT
as

F �

GT
=

�
A�
GT

T

�
0
�
B�

GT

T
2

�
�1�

A�
GT

T

�
= Q0

A�

GT
Q�1
B�

GT

QA�

GT
+ o�p(1)

due to (39) and (40). It is shown in Park (1999) that

~�i(1)!a:s: �i(1) (41)

and, using the multivariate bootstrap invariance principle developed in Chang, Park and Song (2000),

we have
1

T

TX
t=1

w�t�1"
�0

t !d�

Z 1

0

BdB0 a:s:;
1

T
2

TX
t=1

w�t�1w
�0

t�1 !d�

Z 1

0

BB0 a:s: (42)

under Assumptions 1 { 3. Now, the limiting distribution of the F �

GT
follows immediately.

Part (b) It follows from Lemma 2 (b) and (c) that

X�0

p Y
�

` = O�

p(T �p
1=2); X�0

p "
� = O�

p(T
1=2�p1=2) (43)

which together with (38) and Lemma B1 (a) implies that

A�
OT

T
=

Y �0

` "�

T
+ o�p(1) = QA�

OT
+ o�p(1) (44)

where QA�

OT
is de�ned similarly as QAOT in (34) with the bootstrap samples and ~�(1).

Next, we deduce from (38) and Lemma 2 (b) that

X�0

p (
~�
 IT )X

�

p = O�

p(T
�1); X�0

p (
~�
 IT )Y

�

` = O�

p(T �p
1=2) (45)

and this together with (43) gives

M�

FOT

T
2

=
Y �0

` (~�
 IT )Y
�

`

T
2

+ o�p(1) = QM�

FOT
+ o�p(1) (46)

due to Lemma B1 (b), where QM�

FOT
is the bootstrap counterpart of QMFOT

given in (36).

Finally, we have from the results in (45) and (46)

F �

OT
=

�
A�
OT

T

�
0
�
M�

FOT

T
2

�
�1�

A�
OT

T

�
= Q0

A�

OT
Q�1
M�

FOT

QA�

OT
+ o�p(1)

and the stated result now follows immediately from (41) and (42).

Proof of Corollary B.1 The proof is analogous to the proof of Corollary A.1.

Part (a) We have from the bootstrap asymptotic results established in (39) and (40) that
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T �̂�
GT

=

�
B�

GT

T
2

�
�1�

A�
GT

T

�
= Q�1

B�

GT

QA�

GT
+ o�p(1)

Then we may write the K�

GT
statistic given in (22) as

K�

GT
=

�
1

T

�
A�
GT

:� 1f�̂�
GT
� 0g

��0�B�

GT

T
2

�
�1�

1
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�
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GT

:� 1f�̂�
GT
� 0g

��

=
�
QA�

GT
:� 1
n
Q�1
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GT

QA�
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� 0
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0

Q�1
B�

GT

�
QA�

GT
:� 1
n
Q�1
B�

GT

QA�

GT
� 0
o�

+ o�p(1)

Now the stated result follows immediately from (41) and (42).

Part (b) Using the bootstrap asymptotic results in (38), (43) and Lemma B1 (b), we derive

B�

OT

T
2

=
Y �0

` Y �

`

T
2

+ op(1) = QB�

OT
+ op(1)

where QB�

OT
is the bootstrap counterpart of QBOT de�ned in (37). Similarly as in the proof of

Corollary A.1 (b), we may write the test K�

OT
given in (22) as

K�

OT
=

�
1

T

�
A�
OT

:� 1f�̂�
OT
� 0g
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FOT
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2
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OT

QA�

OT
� 0
o�

+ o�p(1)

using the result in (46). The stated result now follows immediately from (41) and (42).

Proof of Theorem B.2 The limit distributions of the bootstrap GLS and OLS based t-statistics,

t�
GT

and t�
OT
, de�ned in (24) are derived analogously as we did for the sample t-statistics tGT and

tOT in the proof of Theorem A.2, using the bootstrap asymptotics established in Lemmas 1 and 2.

Part (a) It follows from Lemmas 1 and 2, and the result in (38) that

a�
GT

T
=

y�0` (
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�

T
+ o�p(1) = Qa�
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T
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`

T
2

+ o�p(1) = Qb�
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+ o�p(1)

where Qa�
GT

and Qb�
GT

are the bootstrap counterparts of QaGT and QbGT de�ned in the proof of

Theorem A.2 (a). We may now write t�
GT

as

t�
GT

=
a�
GT

T

�
b�
GT

T
2

�
�1=2

= Qa�
GT
Q
�1=2

b�
GT

+ o�p(1)

and the limit theory for t�
GT

is directly obtained from (41) and (42).

Part (b) We have

X�0

p y
�

` = O�

p(T �p
1=2); X�0

p (
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 IT )y

�

` = O�
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by Lemma A2 (b). Then we may deduce from Lemma B1 and (45) that
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T
=
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T
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OT
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where Qa�
OT

and QM�

tOT
are the bootstrap counterparts to QaOT and QMtOT

given in the proof of

Theorem A.2 (b). Then we have

t�
OT

=
a�
OT

T

�
M�

tOT

T
2

�
�1=2

= Qa�
OT
Q
�1=2

M�

tOT

+ o�p(1)

The stated result now follows immediately from (41) and (42).
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Table MS.A: Finite Sample Sizes for AR Errors, Demeaned Case

(A1) �i �U(�0:8; 0:8) (A2) �i �U(0:2; 0:4) (A3) �i �U(�0:8; 0:8), ID

N T tests min mean med max min mean med max min mean med max

5 100 t-bar 0.052 0.069 0.070 0.082 0.055 0.070 0.070 0.085 0.040 0.053 0.052 0.074

F �
GT

0.042 0.054 0.054 0.072 0.042 0.054 0.052 0.070 0.036 0.051 0.051 0.065

F �OT 0.041 0.054 0.055 0.067 0.043 0.054 0.054 0.069 0.040 0.055 0.055 0.064

K�
GT 0.041 0.054 0.055 0.074 0.041 0.053 0.052 0.071 0.036 0.051 0.051 0.065

K
�
OT

0.040 0.055 0.055 0.067 0.043 0.054 0.055 0.068 0.040 0.055 0.055 0.065

t
�
GT 0.037 0.050 0.050 0.061 0.039 0.049 0.049 0.064 0.037 0.051 0.053 0.062

t
�
OT 0.036 0.051 0.050 0.066 0.040 0.053 0.054 0.068 0.039 0.054 0.055 0.069

10 100 t-bar 0.061 0.073 0.074 0.086 0.054 0.072 0.072 0.084 0.046 0.056 0.056 0.070

F �GT 0.044 0.054 0.054 0.064 0.037 0.054 0.053 0.068 0.045 0.053 0.051 0.064

F
�
OT 0.042 0.058 0.059 0.070 0.047 0.057 0.057 0.066 0.050 0.061 0.061 0.074

K
�
GT 0.044 0.055 0.055 0.065 0.036 0.054 0.054 0.069 0.044 0.054 0.052 0.065

K
�
OT 0.045 0.058 0.058 0.070 0.045 0.057 0.057 0.068 0.050 0.061 0.061 0.074

t�
GT

0.037 0.053 0.053 0.071 0.048 0.057 0.058 0.069 0.039 0.058 0.058 0.075

t�
OT

0.039 0.056 0.057 0.071 0.043 0.059 0.060 0.074 0.044 0.064 0.067 0.078

Table MP.A: Finite Sample Powers for AR Errors, Demeaned Case

(A1) �i �U(�0:8; 0:8) (A2) �i �U(0:2; 0:4) (A3) �i �U(�0:8; 0:8), ID

N T tests min mean med max min mean med max min mean med max

5 100 t-bar 0.549 0.856 0.885 0.992 0.522 0.842 0.901 0.989 0.568 0.873 0.913 0.997

F �
GT

0.479 0.863 0.929 0.998 0.447 0.844 0.907 0.992 0.457 0.833 0.888 0.993

F �OT 0.354 0.726 0.723 0.952 0.326 0.695 0.701 0.928 0.462 0.842 0.900 0.997

K�
GT 0.480 0.863 0.929 0.998 0.448 0.845 0.909 0.993 0.462 0.834 0.889 0.993

K
�
OT 0.357 0.728 0.724 0.952 0.326 0.697 0.702 0.930 0.464 0.843 0.901 0.997

t
�
GT 0.066 0.558 0.562 0.994 0.346 0.727 0.747 0.996 0.103 0.633 0.663 0.992

t
�
OT

0.093 0.584 0.580 0.911 0.231 0.655 0.635 0.961 0.144 0.664 0.711 0.991

10 100 t-bar 0.949 0.987 0.994 1.000 0.939 0.983 0.993 1.000 0.963 0.992 0.997 1.000

F �
GT

0.917 0.989 0.999 1.000 0.900 0.985 0.997 1.000 0.897 0.976 0.990 1.000

F �
OT

0.801 0.945 0.963 0.998 0.770 0.930 0.958 0.992 0.918 0.982 0.993 1.000

K
�
GT 0.917 0.989 0.999 1.000 0.901 0.986 0.997 1.000 0.901 0.977 0.991 1.000

K
�
OT

0.806 0.946 0.964 0.998 0.775 0.932 0.960 0.992 0.921 0.982 0.993 1.000

t
�
GT

0.121 0.584 0.669 0.964 0.495 0.836 0.856 0.993 0.250 0.732 0.813 0.993

t�
OT

0.347 0.770 0.837 0.985 0.722 0.910 0.907 0.992 0.359 0.796 0.873 0.995

27



Table MS.M: Finite Sample Sizes for MA Errors, Demeaned Case

(M1) �i �U(�0:8;�0:4) (M2) �i �U(�0:4; 0:4) (M3) �i �U(0:4; 0:8)

N T tests min mean med max min mean med max min mean med max

5 100 t-bar 0.290 0.450 0.434 0.638 0.087 0.107 0.103 0.152 0.091 0.100 0.100 0.115

F �GT 0.117 0.179 0.174 0.275 0.046 0.057 0.057 0.071 0.046 0.056 0.053 0.067

F �OT 0.090 0.142 0.139 0.219 0.047 0.064 0.065 0.084 0.045 0.057 0.057 0.068

K�
GT

0.116 0.180 0.175 0.276 0.046 0.057 0.057 0.069 0.045 0.056 0.053 0.068

K
�
OT 0.090 0.142 0.139 0.217 0.048 0.064 0.065 0.084 0.045 0.057 0.057 0.069

t
�
GT 0.125 0.172 0.161 0.258 0.052 0.060 0.059 0.074 0.046 0.058 0.058 0.068

t
�
OT 0.105 0.139 0.137 0.200 0.051 0.063 0.061 0.074 0.049 0.059 0.059 0.073

10 100 t-bar 0.505 0.663 0.651 0.812 0.102 0.130 0.134 0.161 0.099 0.121 0.121 0.142

F �GT 0.176 0.268 0.268 0.343 0.045 0.059 0.059 0.071 0.041 0.054 0.053 0.067

F
�
OT 0.173 0.228 0.230 0.291 0.061 0.074 0.075 0.089 0.056 0.066 0.067 0.077

K
�
GT 0.179 0.269 0.269 0.345 0.044 0.059 0.058 0.072 0.043 0.053 0.052 0.068

K
�
OT

0.178 0.230 0.232 0.295 0.062 0.074 0.074 0.089 0.055 0.066 0.067 0.078

t�
GT

0.190 0.251 0.245 0.322 0.049 0.067 0.070 0.080 0.041 0.069 0.068 0.089

t�
OT

0.153 0.203 0.200 0.246 0.044 0.070 0.072 0.082 0.047 0.068 0.069 0.087

Table MP.M: Finite Sample Powers for MA Errors, Demeaned Case

(M1) �i �U(�0:8;�0:4) (M2) �i �U(�0:4; 0:4) (M3) �i �U(0:4; 0:8)

N T tests min mean med max min mean med max min mean med max

5 100 t-bar 0.960 0.994 0.998 1.000 0.629 0.896 0.936 0.995 0.581 0.824 0.845 0.957

F �
GT

0.885 0.976 0.986 1.000 0.573 0.880 0.921 0.990 0.467 0.789 0.819 0.951

F �OT 0.764 0.945 0.968 0.999 0.443 0.777 0.792 0.961 0.363 0.671 0.661 0.891

K�
GT 0.885 0.976 0.986 1.000 0.574 0.881 0.923 0.990 0.467 0.791 0.820 0.951

K�
OT 0.766 0.946 0.968 0.999 0.444 0.779 0.796 0.961 0.367 0.673 0.661 0.894

t
�
GT 0.653 0.940 0.984 1.000 0.315 0.761 0.821 0.999 0.418 0.719 0.721 0.969

t
�
OT 0.461 0.900 0.949 1.000 0.241 0.714 0.734 0.961 0.280 0.645 0.592 0.937

10 100 t-bar 1.000 1.000 1.000 1.000 0.964 0.993 0.998 1.000 0.851 0.961 0.972 0.998

F �GT 0.997 1.000 1.000 1.000 0.931 0.989 0.996 1.000 0.833 0.948 0.969 0.995

F �
OT

0.991 0.999 1.000 1.000 0.844 0.966 0.984 0.998 0.727 0.890 0.913 0.981

K
�
GT 0.997 1.000 1.000 1.000 0.932 0.989 0.996 1.000 0.835 0.949 0.970 0.995

K
�
OT 0.991 0.999 1.000 1.000 0.847 0.967 0.984 0.998 0.734 0.893 0.917 0.982

t
�
GT 0.878 0.984 0.998 1.000 0.474 0.860 0.951 0.994 0.560 0.828 0.856 0.994

t�
OT

0.942 0.991 0.999 1.000 0.735 0.929 0.946 0.996 0.571 0.871 0.875 0.989
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Table TS.A: Finite Sample Sizes for AR Errors, Detrended Case

(A1) �i �U(�0:8; 0:8) (A2) �i �U(0:2; 0:4) (A3) �i �U(�0:8; 0:8), ID

N T tests min mean med max min mean med max min mean med max

5 100 t-bar 0.076 0.086 0.084 0.102 0.068 0.087 0.085 0.108 0.054 0.066 0.068 0.076

F �GT 0.034 0.049 0.049 0.060 0.037 0.050 0.050 0.060 0.039 0.050 0.050 0.060

F �OT 0.041 0.053 0.052 0.075 0.043 0.053 0.052 0.070 0.042 0.054 0.056 0.063

K�
GT

0.034 0.049 0.049 0.060 0.037 0.050 0.050 0.060 0.039 0.050 0.050 0.060

K
�
OT 0.041 0.053 0.052 0.075 0.043 0.053 0.052 0.070 0.042 0.055 0.056 0.063

t
�
GT 0.033 0.045 0.045 0.059 0.039 0.052 0.051 0.062 0.039 0.047 0.048 0.058

t
�
OT 0.034 0.048 0.049 0.059 0.038 0.052 0.052 0.067 0.032 0.050 0.050 0.064

10 100 t-bar 0.080 0.095 0.092 0.118 0.074 0.097 0.099 0.115 0.061 0.075 0.076 0.095

F �GT 0.039 0.053 0.053 0.061 0.038 0.053 0.055 0.065 0.036 0.052 0.052 0.063

F
�
OT 0.047 0.064 0.065 0.076 0.052 0.065 0.065 0.080 0.063 0.073 0.073 0.084

K
�
GT 0.039 0.053 0.053 0.061 0.038 0.053 0.055 0.065 0.036 0.052 0.052 0.063

K
�
OT

0.047 0.064 0.066 0.076 0.052 0.064 0.065 0.080 0.063 0.073 0.073 0.084

t�
GT

0.037 0.050 0.049 0.068 0.046 0.058 0.058 0.083 0.043 0.052 0.051 0.071

t�
OT

0.038 0.058 0.057 0.078 0.058 0.069 0.069 0.084 0.046 0.063 0.064 0.079

Table TP.A: Finite Sample Powers for AR Errors, Detrended Case

(A1) �i �U(�0:8; 0:8) (A2) �i �U(0:2; 0:4) (A3) �i �U(�0:8; 0:8), ID

N T tests min mean med max min mean med max min mean med max

5 100 t-bar 0.335 0.651 0.655 0.911 0.324 0.633 0.670 0.875 0.313 0.663 0.672 0.928

F �
GT

0.240 0.626 0.677 0.899 0.225 0.599 0.633 0.857 0.224 0.580 0.609 0.866

F �OT 0.176 0.485 0.471 0.777 0.169 0.453 0.445 0.723 0.247 0.612 0.637 0.894

K�
GT 0.240 0.626 0.677 0.899 0.225 0.599 0.633 0.857 0.224 0.580 0.609 0.866

K�
OT 0.176 0.485 0.471 0.777 0.169 0.453 0.445 0.723 0.247 0.612 0.638 0.894

t
�
GT 0.038 0.331 0.282 0.874 0.199 0.487 0.459 0.852 0.059 0.391 0.342 0.867

t
�
OT 0.052 0.342 0.338 0.672 0.146 0.419 0.410 0.759 0.080 0.430 0.392 0.879

10 100 t-bar 0.707 0.884 0.899 0.980 0.682 0.864 0.883 0.968 0.720 0.897 0.918 0.993

F �GT 0.636 0.877 0.895 0.984 0.586 0.847 0.863 0.963 0.580 0.815 0.825 0.965

F �
OT

0.534 0.778 0.804 0.958 0.499 0.739 0.772 0.895 0.636 0.865 0.887 0.988

K
�
GT 0.636 0.877 0.895 0.984 0.586 0.847 0.863 0.963 0.580 0.815 0.825 0.965

K
�
OT 0.534 0.778 0.804 0.957 0.499 0.739 0.772 0.895 0.636 0.865 0.887 0.988

t
�
GT 0.062 0.280 0.293 0.710 0.331 0.604 0.626 0.872 0.165 0.422 0.425 0.755

t�
OT

0.248 0.501 0.508 0.767 0.495 0.714 0.699 0.905 0.248 0.537 0.548 0.841
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Table TS.M: Finite Sample Sizes for MA Errors, Detrended Case

(M1) �i �U(�0:8;�0:4) (M2) �i �U(�0:4; 0:4) (M3) �i �U(0:4; 0:8)

N T tests min mean med max min mean med max min mean med max

5 100 t-bar 0.599 0.755 0.732 0.906 0.135 0.183 0.182 0.235 0.164 0.179 0.178 0.208

F �GT 0.120 0.159 0.159 0.192 0.051 0.071 0.072 0.089 0.046 0.063 0.064 0.078

F �OT 0.085 0.112 0.110 0.143 0.058 0.080 0.082 0.099 0.047 0.069 0.067 0.084

K�
GT

0.120 0.159 0.159 0.192 0.051 0.071 0.072 0.089 0.046 0.063 0.064 0.078

K
�
OT 0.085 0.112 0.110 0.143 0.058 0.080 0.082 0.099 0.047 0.069 0.067 0.084

t
�
GT 0.176 0.225 0.218 0.315 0.061 0.071 0.071 0.085 0.057 0.070 0.070 0.087

t
�
OT 0.124 0.162 0.161 0.219 0.054 0.074 0.070 0.097 0.052 0.067 0.068 0.083

10 100 t-bar 0.857 0.937 0.948 0.988 0.228 0.262 0.255 0.325 0.228 0.246 0.249 0.265

F �GT 0.171 0.219 0.227 0.281 0.060 0.072 0.071 0.092 0.051 0.063 0.061 0.076

F
�
OT 0.152 0.193 0.195 0.229 0.088 0.104 0.102 0.119 0.079 0.088 0.087 0.102

K
�
GT 0.171 0.219 0.227 0.281 0.060 0.072 0.071 0.092 0.051 0.063 0.061 0.076

K
�
OT

0.152 0.194 0.196 0.229 0.088 0.104 0.102 0.119 0.079 0.088 0.087 0.102

t�
GT

0.293 0.354 0.356 0.416 0.077 0.091 0.090 0.108 0.080 0.095 0.097 0.110

t�
OT

0.263 0.299 0.290 0.344 0.082 0.109 0.108 0.136 0.084 0.097 0.098 0.109

Table TP.M: Finite Sample Powers for MA Errors, Detrended Case

(M1) �i �U(�0:8;�0:4) (M2) �i �U(�0:4; 0:4) (M3) �i �U(0:4; 0:8)

N T tests min mean med max min mean med max min mean med max

5 100 t-bar 0.954 0.991 0.997 1.000 0.489 0.788 0.825 0.965 0.466 0.694 0.708 0.865

F �
GT

0.568 0.834 0.867 0.963 0.326 0.680 0.710 0.905 0.268 0.544 0.554 0.780

F �OT 0.412 0.757 0.760 0.932 0.296 0.581 0.576 0.832 0.235 0.459 0.443 0.681

K�
GT 0.568 0.834 0.867 0.963 0.326 0.680 0.710 0.905 0.268 0.544 0.554 0.780

K�
OT 0.412 0.757 0.760 0.932 0.296 0.581 0.576 0.832 0.235 0.459 0.443 0.682

t
�
GT 0.468 0.842 0.910 0.995 0.214 0.576 0.592 0.954 0.275 0.506 0.475 0.831

t
�
OT 0.362 0.770 0.814 0.974 0.195 0.524 0.542 0.828 0.203 0.436 0.400 0.727

10 100 t-bar 0.999 1.000 1.000 1.000 0.840 0.956 0.972 0.996 0.796 0.911 0.927 0.972

F �GT 0.891 0.963 0.976 0.999 0.674 0.902 0.940 0.982 0.527 0.780 0.821 0.911

F �
OT

0.874 0.969 0.982 0.998 0.640 0.869 0.903 0.978 0.527 0.749 0.768 0.887

K
�
GT 0.891 0.963 0.976 0.999 0.674 0.902 0.940 0.982 0.527 0.780 0.821 0.911

K
�
OT 0.874 0.969 0.982 0.998 0.640 0.869 0.903 0.978 0.528 0.749 0.768 0.887

t
�
GT 0.783 0.942 0.984 0.996 0.370 0.691 0.778 0.920 0.464 0.679 0.663 0.916

t�
OT

0.914 0.967 0.983 0.999 0.612 0.806 0.827 0.964 0.600 0.750 0.748 0.907
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