Econometric Theoryl6, 200Q 905-926 Printed in the United States of America

VECTOR AUTOREGRESSIONS WITH
UNKNOWN MIXTURES OF /(0), /(1),
AND /(2) COMPONENTS

YoosooN CHANG
Rice University

This paper develops a new estimation method for nonstationary vector autoregres-
sions(VAR'’s) with unknown mixtures ofl (0), 1(1), and(2) componentsThe
method does not require prior knowledge on the exact number and location of
unit roots in the systenit is, therefore applicable for VAR’s with any mixture of

1(0), 1(1), and ! (2) variables which may be cointegrated in any forfhe limit
theory for the stationary component of our estimator is still nostiedreby pre-
serving the usual VAR limit theoryyet, the leading term of the nonstationary
component of the estimator has mixed normal limit distribution and does not in-
volve unit root distributionOur method is an extension of the FM-VAR proce-
dure by Phillips(1995 Econometrica63, 1023-1078 and yields an estimator
that is optimal in the sense of Phillig$991, Econometricab9, 283-306. More-

over, we show for a certain class of linear restrictions that the Wald tests based
on the estimator are asymptotically distributed as a weighted sum of independent
chi-square variates with weights between zero and Boesuch restrictionghe

limit distribution of the standard Wald test is nonstandard and nuisance parameter
dependentThis has a direct application for Granger-causality testing in nonsta-
tionary VAR's.

1. INTRODUCTION

Nonstationary vector autoregressiopnAR’s) with | (1) processes have been
investigated by many authqgrand their statistical theory is now well estab-
lished The statistical theory for such VAR's is developed by Park and Phillips
(1989 and Sims Stock and Watson1990. The maximum likelihood estima-
tion of those models in error correction mod&CM) or reduced rank form is
proposed by Ahn and Reins€l988 and Johansefi1991). Toda and Phillips
(1993 1999 consider testing for causality in such nonstationary VAR’s
Phillips (1995 shows that the fully modified least squal&3vi-OLS) regres-
sion by Phillips and Hansefl1990 provides an optimal inference for regres-
sions with unknown mixtures df(0) and | (1) regressorsChang and Phillips
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(1995 extend the methodology to regressions includif®) regressors and pro-
pose the residual-based fully modified least squaRBFM-OLS) procedure
The approach by Phillipgl995 and Chang and Phillipel995 is in sharp con-
trast with other existing methodall the existing optimal methods presume
knowledge on the unit roots and cointegration in the modich is in prac-
tice obtained through preliminary tests

The theory for FM-OLS is valid also for VAR models with unknown mix-
tures ofl(0) andl (1) componentsas shown in Phillipg1995. However the
RBFM-OLS method by Chang and Philligg995 is not applicable to VAR's
with unknown mixtures ofl (0), I (1), and | (2) componentsThe estimator is
simply undefined in the context of VAR%Ve propose in the paper a new method
calledresidual-based fully modified vector autoregressi®@BFM-VAR) pro-
cedure that is applicable to any VARSs long as the individual variables are
integrated of order not exceeding tw&e allow for any unknown mixture of
1(0), 1(1), and1(2) variables included in the VAR modeMoreover the | (1)
andl (2) variables may be cointegrated in any form among themselves

The RBFM-VAR procedure is an extension of the FM-VAR methodology de-
veloped in Phillipg1995 and is optimal in the sense of Phillig$991), though
it does not require precise knowledge about the number of unit roots and dou-
ble unit roots in individual series and the cointegrating relationships in the model
Naturally our estimator has a limit distribution that is identical to that of the
fully modified vector autoregressiofFM-VAR) estimator by Phillipg(1995
when the VAR includes only(0) andl (1) componentsFor a certain class of
linear restrictionswe show that the inference based on our estimator yields
Wald tests that are asymptotically distributed as a weighted sum of indepen-
dent chi-square variates with weights between zero and one

The rest of the paper is organized as follo®sction 2 introduces the model
with assumptionsOur RBFM-VAR estimator is proposed in Sectionv@here
we also investigate the asymptotic behavior of the estim&ection 4 devel-
ops an asymptotic theory for the modified Wald tests based on the RBFM-VAR
regressionThe results from Monte Carlo simulations are reported in Section 5
Section 6 concludes the papbtathematical proofs are given in the Appendix

The following terminology and notations are used in the pap&r denote
by Q = X E(ucup) the long run variance matrix of the stationary time
seriesuy; and writelr var(u,) = Q. We use BMQ) to denote a vector Brownian
motion with covariance matriQ and write integrals with respect to Lebesque
measure such af%l B(s)ds simply asfo1 B. The notationX; ~ 1(d) signifies
that the time seriegX,} is integrated of orded, so thatA9X; ~ 1(0), and this
requires thatr var(A9X,) > 0. The inequality>0 denotes positive definite when
applied to matricesVe use the symbolssy, —,, =, and:= to signify conver-
gence in distributionconvergence in probabilityequality in distribution and
notational definition respectivelyWe also use vg@) to stack the rows of a
matrix A into a column vector anfix] to denote the smallest integex. All
the limits given in the paper are taken as the sample Bize co.
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2. THE MODEL AND PRELIMINARY RESULTS
Suppose we want to estimatepth order VAR given by
Ve = Aty oo +Apyt—p+8t:A(L)yt—1+8t, (1)

whereA(L) = 3P, A L'"1. The systen(1) is initialized att = —p + 1,...,0.
We let the initial valuegy_,.1,..., Yo} be any random vectors including con-
stants because our asymptotics do not depend on thEanbe more specific
about the order of unit roots and cointegrating space write (1) as

NPy, = (L) A%, + T Ay g + Y g + & (2

in the ECM format used by Johansét995. The ranks offl; and II,, and

their ranges and null spagetetermine the nonstationary characteristics of the

model In what follows we use the notationg, andy, defined respectively
by y,y = 0 andy = y(y'y)™ %, for matricesy (n X r) andy, (n X (n—r))
of full column rank

Assumption 1 We assume

(a) & is i.i.d. with zero meanvariance matrix2,, > 0, and finite fourth order
cumulants

(b) The determinantal equatidh— A(L)L| = 0 has roots equal to one or outside the
unit circle i.e, |[L| = 1.

(c) Tl = aB’ has rankr < n, wherea andB are(n X r) full rank matrices

(d) @', ¥B, = ¢n’ has ranks < n — r, where¥ = I, + II, and ¢ andn are
((n = r) X s) matrices of full column rank

(@ ¢, a, (YBa’V¥ + 1 — 3P 2®,)B, n, has full column rankn —r — s).

Remarks

(@ Whenr # 0 ands # 0, it follows from Theorem 3 in Johansd®995 thaty, is a
mixture of 1(0), 1(1), and I (2) processes under Assumptioral—(e). Specifi-
cally, B522%y,, BiAY,, and B'y; + @ VB, B5AY, are stationary processeshere

B1=B.mandB, = B, n, . Notice that the last stationary process listed involves

cointegration ofl (2) processy; with its own differenceAy,, thereby establishing
multicointegration or polynomial cointegration introduced in Engle and(1891).
It follows that (B, B1)'V:, B2AY; arel (1) processes andy; is | (2).

(b) In the case where = s = 0, we havell; = II, = 0, and this implies thay; is a
noncointegrated(2) process

Our estimation of (2)-VAR (1) is based on the least squares regression
Y = @z, + Aw, + g, 3)

wherez, = (A%Y{_1,...,0%Y{_p:0), Wy = (AY{_1,¥{_1)', and the coefficient ma-
trices® and A are defined accordingly from;’s in (1). We may recover the
estimates for;'s from those of® andA using the relationships
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P
D = (Dy,...,Pp5) With &= (k—i+1DA,
k=i

and
P P
A= (‘2 (k= DA, X Ak)-
k=2 k=1

The regressors included mearlier are the lagged second differen@sl hence
they are known to be stationgrigowevey those inw; are the first differences
and the levels of the data that are of unknown mixed order
We use &a2n X 2n) matrix H to separate out thig0), 1 (1), andl (2) compo-
nents of the2n X 1) regressowmy; of unknown mixed ordern the notation of
Assumption 1the matrixH is expressed as
%) (4)
B2

0
B2)

The component matricdd,, H,, andH; are of rankan; = 2r + s my,=n—r,
andmz = n — r — s, respectivelyWe then specifyw, as follows

Bo(@'¥By) By B|B> O
B 0O 0|0 pB;

H = (Hi,H3,Hg)' = (

and the corresponding inverse as

0 B Bl B 0
H71 = Hl, HZ’HB = ] ] 2 2
( ) (ﬁ 0 O|-pa'vp, pB

Hiw, = Wy = Uy,
AH,W, = AWy = Uy, 5)
A2H3Wt - A2W3t - U3t,

whereuy,, Uy, andus, generaterespectivelythe | (0), I (1), and|(2) compo-
nents ofw,. The matrixH contains the information about the exact orders of
integration of the individual components in the potentially nonstationary regres-
sorw; and the precise form of cointegration in the mod®. We emphasize
thatH is unknown and that the method proposed in the present paper assumes
no such knowledge aboti.

Define an(np X np) matrix G by

lnp-2 O\  (lap-2 O 0 OV
G- )= ) = (GLGLGYY
0 H 0  H{ H) Hy
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and its inverse by

In(p—Z) 0 In(p—2) 0 0 0
G1l= 1] = 1 2 3] = (GLG3G?®).
0 H 0 H! HZ H

The matrixG separates out thg0), 1(1), and|(2) components of the entire
regressowx, = (z{,w;)" in (3). We may now rewrite the modé¢8) as

Vi = FX + &
(6)
= FyXq + FoXor + FaXg + &,
whereF = (@, A), Fy = FG! = (d,AY), F, = FG2 = A2, Fy = FG? = A%, with
A = AH' fori =1,2,3 and

Xy = Gy X = (z, W H7)" = (z{,wy)" ~ 1(0),
Xor = Gy X = Howy = Wy ~ 1(1), (7)
Xgr = GgX = Haw, = Wy ~ 1(2)

With X; = (X1, Xat, X5t)' -

For the development of our asymptotic theome defineu; = (&/, U5, us,)’
to be an(n + m, + mg) vector stationary proces8ecause of Phillips and
Solo (1992, the functional central limit theoryfFCLT) for u; holds i.e,
T-723Mly 5, B(-) = BM(Q), whereB = (B, B}, B})' is a vector Brown-
ian motion with covariance matrif) = > Euu,* We also define the
contemporaneous covariance matxand the one-sided long run covariance
matrix A of u, by 3 = Eupup andA = 377 Eu, up. We partition(, 3, and A
conformably with the partition ofi, into cell submatrices();, Xj;, andAy;, for
i,] =¢,2,3.

Moreover if we let ¢ = & X Xy1, then{e;} is a martingale difference se-
quence(mds with var(e;) = Ir var(e) = 2., ® 21, becausdes,} is indepen-
dent and identically distribute@.i.d.) under Assumption .ITherefore we have

1 T oo
T Elﬁf’t —g N <0,_ 2 E(ereiy; ® Xy X]/.t+j)> =N(O,2,, ® 21), (8)
t=

j=—o0

whereX, 1 = EXy Xy

3. THE RBFM-VAR ESTIMATOR AND ITS LIMIT THEORY

We now introduce a new method of estimating 1i{2)-VAR model (1) that
does not require prior knowledge about the number of unit roots and double
unit roots in the system or pretesting to determine the dimension of the cointe-
gration spaceOur method is based on the regression formulate@)jnwhich

can be viewed as a regression with an unknown mixturng@t 1(1), andl(2)
processegOne may therefore consider directly applying the RBFM-OLS method
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of Chang and Phillipg1995 to estimate the mode(3). Unfortunately the
method is not applicable heréhe RBFM-OLS procedure corrects the endo-
geneity using the residual from the first order autoregression of the differenced
nonstationary regresseor, = (Ay{_4,Y{_1)", which reduces in this case fp =

(D1,020)" In

N2y, Ny b
Yi-1 — Yi-2 n Alt . )
AYiq AYio Vgt

However we haved,, = 05, and this results in singularity in parameter esti-
mates To see thiswrite A%y, ; = Ay, ; — Ay, , and note that\y; , is in-
cluded in the regressofg\?y;_,,AY;_,)" in (9). Therefore the fitted residual
04, from the regression fon?y, , becomes identical to the fitted residual from
the regression fo\y,_ 4, which is exactlys,,. The RBFM-OLS estimator is
therefore not defined for the VAR models

To introduce a new estimatorve write (3) and(6) in matrix format as

Y =®Z' + AW + E' =FX' +E/ (10)

whereY' = (yl,...,yT), Z'= (Zl,...,ZT), W' = (Wl,...,WT), E'= (81,...,81’),
X = (Z,W), andW = (AY';,Y ;)" with Y_; = (Yo,..., Y¥7-1). We use for the
construction of our correction terms the preliminary ordinary least squaies)
residualg, and the process

0 N2y,
o= (") = o), 1)
Ut AYi1 — NAY 5

whereN is the OLS coefficient estinlate from the regressiom\gf_; on Ay, _».
We also defineV = (A2Y_;,AY_; — NAY_,).
Our estimatarwhich we call the RBFM-VAR estimatprs defined by

Fr=(bd"AY)=(Y'ZY"W+ TAY)(X'X) L (12)
with
Y+! = Yl - Qéﬁ Qgﬁl\?l and A+ = Qéﬁ QgﬁlﬁﬁAW, (13)

where consistent estimates for various nuisance parameters are denoted by
as we will explain subsequentlyote from the definition ofr * given in (12)
that we leave the known to be stationary regre&ontact and transform only
the regressors of unknown mixed ordéf to correct for its potential endo-
geneity and serial correlation effects

In the formulae for the correction terms given(i8), s, and(),; are kernel
estimates of the long run covariance matricegd &{s,) and o, respectively
Similarly, A, is a kernel estimate of the one-sided long run covarianag of
and Aw,. These kernel estimates are defined in the general,fatmch can be
found in Priestley(1981) or Hannan(1970. As in the analyses for thé&(1)
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cointegrated models in Phillipgl995 and for thel (2) cointegrating regres-
sions in Chang and Phillip&1995, the kernel estimation of botR and A
continues to play an important role in developing the limit theory forlgQy-
VAR models We use the same class of admissible kernels as in the aforemen-
tioned references

We also employ the same expansion rate order syi@pdefined in Phillips
(1995 and Chang and Phillip€L995 to explicitly characterize rates of expan-
sion of the lag truncation or the bandwidth= K(T) asT — c. We use the
definition K = O4(T¥) to impose some explicit conditions on how the band-
width parameteK grows asT — oo. In particulay the bandwidth parameter
expansion ratek, is used in the kernel estimation of the long run covariance
matrices appearing in the formulae for our correction terms gived 3

We use a subscript coupling notatibriby b = 2,3 to group the nonstationary
regressors and their coefficient matrices(6) as Xy, = (X4, X4;)" and Fp, =
(F,, F3). We may then conveniently formulate the asymptotic theory in terms of
the component submatricés andF, that correspond to the stationary and non-
stationary components of the regressaétiso defineD; = diag(TImz,TZIm3)
for normalization of thel (1) and|1(2) components in our subsequent asymp-
totic analysesWe now present the limit theory for the RBFM-VAR estimator
given in(12).

THEOREM 1 Under Assumptiord, we have

(@ VT(E* = F)G! 54 N(O,3,, ® Sigh), 5,8
(b) (F* — F)G®Dr —¢ [ dB, ,BL(JIB,BL) 1 = MN(0,0,,., ® (fByBp) ™),

whereB, = (B}, B;)’ with Bs(r) = [, Bs(s)ds and B., = B, — Q,,053B, =
BM (988-2) with 988-2 = 288 - 9529521‘0'25'

Part (a) holds for the bandwidth parameter expansion rate=kO4(T¥) for
k € (3,%). Part (b) holds for ke (0,3). The limit distributions in(a) and (b)
are statistically independent.

Remarks

(a) The limit distribution of the RBFM-VAR estimator for the stationary component
coefficient remains the same as the corresponding OLS estimétarh will be
called OLS-VAR hencefortiTherefore our procedure does preserve the usual VAR
limit theory for the stationary components in the absence of prior or pretest in-
formation on the cointegration space

(b) The limit distribution of the RBFM-VAR estimator for the nonstationary coeffi-
cient is mixed normalThe mixed normality follows from the independence of
the limit Brownian motionsB,., andB,,. The covariance matrig,,., of B,., is
singular alongH; defined in(4). This implies in particular that the limiting dis-
tribution in part(b) is degenerate in the unit root directidhis possible to ana-
lyze lower order asymptotics along this directidut we do not pursue it any
further in the paper
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(©)

(d)

(e)
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The statistical independence of the limit distributions in p&ajsand (b) in the
preceding discussion is established by thel.iproperty ofe;. The form of the
covariance matrixs,., ® S, in part(a) is also due to this property

The proces$, defined in(11) can be viewed as the residual from regress@n
with restrictions on the coefficient matrik namely

A%y, 0 0\ /A%y _ ]
Yi-1 _ X Yi-2 4 Alt . (14)
AYq 0 N AYy Ut

The zero restrictions odiremove the singularity problem that arises in the appli-
cation of the RBFM-OLS procedur@o examine the preceding regression more
explicitly, we further partition the rotation matrid and its inverse as

Hip Hi H ) L, (H™ HE T
H= and H *=
Hi; Hi Hi HiZ H22 H32

and use these to respecify the motet) as

Haw, = H <2 Sj) H *HAW, , + Hb,,

ie,

AWy, = J13 AWy + JoA0W g + J13AWs g + By, (15)
AWy = 1AWy + Top AWy g + Jp30Wae_y + Dy, (16)
AWy = Jg1 AWy g + JooAWo 1 + J33AWs o + Dy, (17)

where we use the notatiods = H;,NH12, for i, j = 1,2,3. The probability limits

of the coefficient matrices on thig1) regressorAws,_; in the regressiongls)
and (16) are zero lest the regressions be spuriddswever plim Jsz = 1, be-
cause the regressiah7) is a full rankl (1) regressionWe may indeed show that
Jiz= Jp3= 0p(T71) andJsz = | + Op(T 1), because the OLS estimators for the
coefficients ofl (1) variables ar€l consistentThe residuaby, := (01, 05,05
can then be expressed as

Aug j11 jlz
R N N AUy 4 1
Oe= Uzt | = [ J21r I +Ou(TY2)
a A Uz—1
Uzt a1 Ja2

using the definitions ofiy¢, Us, andus; given in(5).

As can be seen clearly from the previous discussibe process; extracts and
locates the stationary processgegsandus; exactly where they are needed for the
correction of the endogeneities in thel) andl (2) componentsIn the stationary
direction however 9, containsAuyg, the difference of the stationary procass,
which has zero long run variancghe limit of the kernel estimatéﬁﬁ of the long
run variance ofj, will therefore be singular in the stationary directiorhis is
precisely why our correction terms constructed frianteave the usual VAR limit
theory for stationary components intaethile successfully removing the endo-
geneity problem in the limit distribution of the nonstationary OLS-VAR esti-
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mates To achieve thiswe of course need to correct for the serial correlation
effects induced by our correction termie., the one between, andw, in thel (1)
direction This is again done similarly by exploiting the asymptotic singularity of
the kernel estimatd .., of the one-sided long run covarianceigfand Aw;. See
(A.4) and(A.5) in the Appendix

(f) When there are only(0) andl (1) components in the systerthe limit distribu-
tion given in part (b) becomes mixed normal with varianc@,... &
(JoB,B5)™, which is identical to that of the FM-VAR estimator in Phillips
(1995. Moreover the conditional covariance matrix given in pdhj is identi-
cal to that of the maximum likelihood estimatOvLE) under Gaussian errors
obtained by Kitamura1995, becauseQ,,.o = S, — Q.,0530,, = 3., —
Qo Q. = Qqe.p. Our results in partb) characterizing the asymptotic be-
haviors of our estimators correspond to those of the exact MLE under normality
obtained by Johanse1995 Theorem 5. However it seems difficult to estab-
lish a direct comparison because the two estimators are based on different
normalizationg

4. HYPOTHESIS TESTING IN RBFM-VAR REGRESSION

We consider hypothesis testing in the VAR modgl formulated as in6). As
usua) we write the general linear restrictions on the coefficient mefrixs

Ho:RvedF) =, F=(d,A), R(gx n?p) ofrankq. (18)

It is well known that the Wald test for the hypothe$is) has chi-square limit
distribution if the rank condition

rank(R(2,, ® G121 G)R) = q (19)

holds However the rank condition(19) may fail Importantly such rank con-
dition may fail in testing for Granger causalitgs Toda and Phillip$1993
1994 point out They show that the limit theory of the causality test in nonsta-
tionaryl (1)-VAR’s may involve nuisance parameters and nonstandard distribu-
tions if based on the OLS-VAR estimatofo alleviate such difficulty we
propose to use

W = T(RvecF * — 1) (R(E:; @ T(X'X) R) L(RvecF " —1),  (20)

wheres ;; is the usual covariance matrix estimate for the regression ettdss
a modified Wald test based on our RBFM-VAR estimafof defined in(12).
Both W™ and the standard Wald test have the safédimiting distribution
when the rank conditionil9) is satisfied However they are expected to be-
have quite differently when the rank conditiéto) fails.

To look more closely at the limit theory &fF in the case of rank condition
failure, we suppose that the restriction matfhas the Kronecker product form
R=R; ® R}, whereR; (g; X n) andR, (np X qg,) are of rankq, and gy,
respectively with g0, = g. The causality restrictions may be formulated in
this Kronecker product form that can be further restricted2®, which fol-
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lows. See the next section for an illustratiofhe rank condition19) is then
written accordingly as

rank(R; 2., Ri ® RyGi35iG1 Ry) = 0, Gy, (21)

which fails whenR;Gj is of deficient row rankThis happens when the restric-
tion R, isolates some of the nonstationary coefficientsAdh F = (@, A). To
effectively analyze such casege more specifically [eR, = diag(R¢, Roa) SO
that the restrictions on the potentially nonstationary coeffickeigan be writ-
ten out separately from those on the known to be stationary coeffidiers

HE): Rl(Dszp = R3q> and RlARZA = R3A’ (22)

where rankR,4) = gg, rank(R,a) = Qa, With g, = g + ga, and for some
suitable matrice®;, andRza. We may then write

Roa = (Roa1s Roap) = (H 1SA1, H bSAb)’ (23)

where rankR;a1) = ga1, and ranKR,ap) = Qap, With ga = ga1 + gap, and for
some matrice$,, and Syp. We assume without loss of generality that the ma-
trix Sy, has full column rank

Whengy, # 0, i.e., when the restriction does relate to the nonstationary co-
efficients of A, the R;G; becomes deficient in row ranknd consequently the
rank condition(21) fails. The standar(;i(?1 limit theory therefore does not apply
in this caseThe following theorem provides the limit distribution of the mod-
ified Wald statisticWg in this case of the rank condition failure

THEOREM 2 Under Assumption, the modified Wald statistic Wfor test-
ing hypothesig{y: Rved(F) = r with R= R; @ R; has a limit distribution that
is a mixture of chisquarevariates for the bandwidth parameter expansion rate
K = O(TK) for k € (3,3). In particular, when R has the form R =
diag(R,4, Roa), Where R4 is given by(23), we have

1
2 2 (i
WFJr —d Xau(de+dar) + 21 di XqAb(I )
i=

wherey; (i) =iid. (x3,), i =1...,00 and are independent of theg (g, +q.)
member in the preceding equation. The coefficients=<1,...,q; are the eigen-
values of the matrixR, Q.. ,R))Y2(R; 2,. R)) 1 (R, Q,..,R))Y2 The limit dis-
tribution of W is bounded above by g3 distribution

Remarks

(@ From Q... < 3., it follows that (R Q.. ,R)Y?(R3.. R}t X
(R1Q...o.R)Y? = 1, implying that the eigenvalued;, i = 1,...,q; that appear
in Theorem 2 satisfy 6= d; = 1, Ti. Consequentlythe limit distribution of
WE is bounded above by the variafe q,+qq) + 21 Xaul) = X2 o+ ae-
Thus we can always construct an asymptotically conservative test for the hy-
pothesisHy USING @ x5, (g, +a0) = X, = Xa limit distribution. Thus conven-
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tional critical values can be used to construct asymptotically yahdugh
conservativetests in our RBFM-VAR regressions

(b) The reason that the limit theory oM is conservative is thatVe™ uses the
weighting metricS:: ® (X’X)1 for the entire coefficient matrie = (d, A),
irrespective of whether the associated variablg@, 1 (1), or | (2). With our mds
regression errorshis weighting matrix is proper for the stationary coefficient
estimateshowever for the estimates of the nonstationary coefficieitts heavier
than it should be(For a more detailed explanatiosee Phillips 1995 Remark
4.6(d).)

(c) The hypothesis formulated if18) or (22) does not include the test of the rank of
I1,, except for the special ca$e, = 0. The reader is referred to Johangé895
for the general rank tesDn the other handlohansen also considers the hypoth-
esis of the formIl,R, = R,, with known restriction matrixR,. This is just a
linear hypothesis onl,, which is a special case of the restriction we consider
here

The limit theory presented in Theorem 2 establishes the extension of the re-
sults in Theorem & of Phillips (1995 to more general VAR models that allow
for I (2) processes and a wider range of cointegratiGng theory includes cau-
sality tests and therefore offers an alternative to sequential test procedures such
as the one in Toda and Philligd994 and to artificial model overfitting pro-
cedures such as the one introduced in Q1893.

5. A MONTE CARLO SIMULATION

To examine the finite sample behavior of the newly proposed RBFM-VAR es-
timator and test statisticsve perform a Monte Carlo simulatiofror the sim-
ulation we consider a VAR iny; = (yis, Yor)' generated by

AYir = p1AY1—1F po(Yi—1 — AYp—1) + €1
D2y = g (24)

0.5

1 .
We sete; ~ i.i.d. N(0,X) with 3 = (05 1 ) in the simulation

The preceding data generating processyfaan be written in the ECM form
as in(2) with ®(L) = 0,

. — 1711 1712\ pr—1 —p;
! 121 1722 0 o)

L — 2T11 2712\ (P2 0
2 2721 2722 0 0)’

where the parametegs andp, are required to bgp,| < 1 and—2(1 + p;) <
p»> = 0 under conditior{b) of Assumption 1Note that wherp, = 0 andp, =1,
we havell, = II, = 0. This is exactly the case discussed in Rem@kfollow-
ing Assumption 1Hereg the model(24) becomesA?y, = &, which means that
bothyy; andy,, arel (2) with no cointegrationlf p, = 0 and|p,| < 1, then(24)
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is written explicitly asAyy; = p1Ayi_1 + &1 and A%y, = e,. This implies
thaty,, is still I(2) buty,, becomed (1) for all |p,| < 1.

Whenp, # 0, the implications from Theorem 3 of Johangd®95 directly
apply In the notations used in Assumption e have from the reduced rank
restrictionIl, = aB’ thata = (p,,0) andB = (1,0)'. It is straightforward to
see thar = 1 ands = 0 in conditions(c) and(d) of Assumption 1 Condition
(e) in Assumption 1 is also trivially satisfied his then implies thay;, is com-
posed ofl (0), 1 (1), andl(2) processesMore specifically

B'Y: = Yo ~ 1(D),
Béyt = y2'[ -~ I(Z)v
B'Y: + @' VB, BoAY: = Yy — Ay ~ 1(0),

as discussed in Remark) following Assumption 1
We look at the following three casesach of which is defined by the values
of the parameterg, and p,:

Case A( p1, p2) = (1,0). In this casebothy; andy, arel (2) processes with
no cointegrating relationshig-urthermore none ofy, andy, Granger-causes
the other

Case B(p4, p,) = (0.5,0). One can easily see thgf reduces td (1) process
under this specificatigrbecauseép,| < 1. The other variablg/, remains to be
I (2) processAs in Case Ano Granger causality exists in either direction

Case C(p1, p2) = (—0.3,—0.15). As in Case By, andy, arel (1) andl(2),
respectivelyHowever y, in this case Granger-causgs

We test whetheyy; is caused by,;. Then the null hypothesis of noncausal-
ity can be formulated as

H0: 112 = 0 and 210 = 0, (25)

which can also be expressedRsedI1,,I1,) = r as in(18) with

L (0100 0
“\o o 0o 1/ 29 "Tlo)

whereR andr can be writtenrespectivelyasR = R; & Rj; andr = vedR;)

R
()

The null hypothesis is tested via Wald tests constructed from the OLS-VAR
and the RBFM-VAR estimators for the coefficient matridésandIlL,.

For each set of simulationsamples of sizes 150 and 500 are drawf0Q0
times to compare the finite sample performances of the OLS-VAR and the

Rl = (150), R2 = a.nd R3 = (0,0)
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RBFM-VAR estimators Also the Wald tests based on the OLS-VAR and the
RBFM-VAR estimators are compared in terms of their finite sample sizes and
power propertiesWe explore how close the finite sample sizes of these Wald
tests are in relation to the nominal sizes of the bounding vajidte

Table 1 reports the finite sample biases and standard deviafsahs for
the OLS-VAR and RBFM-VAR estimators di; andIl, for Cases A—C when
T = 150 The results from the simulations with = 500 are similar to those
from the simulations witiT = 150 and thus are not reportdegures 1-3 present
the density estimates for the OLS-VAR and the RBFM-VAR estimaitte
we only report the results fdi,; and for the sample siZ€ = 150 The results
for 11, and for the simulations witfl = 500 do not provide much additional
information Each figure has a set of four density estimates for the individual
coefficients ofll, = (,7y), i,j = 1,2. Table 2 reports for Cases A-C the finite
sample sizes and rejection probabilities of the standard WaldWeston-
structed from the OLS-VAR estimates and the modified Wald\téstbased on
the RBFM-VAR estimators defined i(20).

As one can see from Table 1 and Figures,1th& RBFM-VAR estimators
generally perform better in finite samples than the OLS-VAR estimators in terms
of both biases and varianceBhe former have smaller biases and variances
than the latter in most casebhis, however is not so for every cas@ here are
a few cases where the OLS-VAR estimators outperform the RBFM-VAR coun-
terparts This is indeed expected from our theofhere are stationary compo-
nents in the modeffor which no correction is neede&or the coefficients of
the stationary componentbie OLS-VAR estimators are efficigrand our method
introduces unnecessary correction terfitse unnecessary correction would in-
cur additional finite sample biases and variatiohisough we do not report the
details to save spagc¢hese additional biases and variations disappear as the
sample size increases

The finite sample sizes of the modified Wald t&¥f constructed from the
RBFM-VAR estimator are relatively much closer to the nominal si2sscan
be seen from Table,2he standard Wald tesé based on the OLS-VAR esti-
mator has serious size distortions for both Cases A an@/dse this problem
appears to persist even for large sampldse size distortions of the standard
Wald test are enormous even when the sample size is as large .a6h&00ull
of noncausality would therefore be overrejected significantly if based on the
standard Wald testor Case Cthe reported numbers are the rejection proba-
bilities for the modified and standard Wald testbey are smaller for the mod-
ified Wald test compared to the standard Wald tes$ a resultthe rejection of
the null hypothesis is more likely if one uses the modified Wald. test

6. CONCLUSION

The RBFM-VAR procedure we proposed in the paper can be used to statisti-
cally analyze VAR models without specifying nonstationary characteristics of
the model In particulay we allow for the presence d{2) variables and coin-
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TaBLE 1. Finite sample biases and standard deviations

T=150 Case 1711 1712 1721 1722 2711 2712 2721 2722
OLS-VAR estimators
Bias A —.72279 .00045 —.00360 —.71256 —.00648 .00017 —.00020 —.00659
B —.26780 .04559 —.03925 —.43318 —.26286 —.00007 —.00258 —.00032
C .07918 .14560 —.04801 —.35663 —.33216 .00078 .09794 .00033
s.d. A .61219 .58508 .59164 .60788 .02488 .02550 .02577 .02475
B .90883 48336 91076 48995 .26825 .00922 26363 .00887
C .92990 .61381 .94687 .65698 .66624 .00462 71439 .00582
RBFM-VAR estimators
Bias A —.46002 —.00253 —.00402 —.45717 —.00230 .00003 —.00009 —.00243
B —.22124 —.03669 —.06553 —.26108 —.08025 —.00007 .00206 —.00014
C —.06287 —.43333 —.01431 —.21680 41416 .00039 .03557 .00008
s.d. A 49459 47492 47206 49179 .01283 .01262 .01336 .01253
B 99153 .34266 10031 .36156 14827 .00416 14247 .00403
C .96448 65763 .98883 .62593 .68866 .00284 63427 .00228

Note: The actual numbers reported are scaled\§¥ for both biases and standard deviations
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TABLE 2. Finite sample sizes and rejection probabilities

Case T =150 1% test 5% test 10% test T =500 1% test 5% test 10% test

A We 0.195 Q404 Q0529 We 0.197 Q403 Q518
W 0.031 Q090 Q150 W 0.031 Q084 Q130

B We 0.105 Q274 Q395 We 0.090 Q255 Q378
W 0.011 Q044 Q080 W 0.015 Q045 Q077

C We 0.761 Q902 Q947 We 1.000 1000 1000

W 0.317 0524 0628 W 0.979 0994 Q998
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17?11, T = 150

1712, T = 150

4 14
12 12
10 0
£s e
4 4
2 2
H35 -030 -0 25———-0.—2; ~0.15 -0.10 -0.05 -0.00 005 0.10 2073 -0.2 0.3
1721, T = 150
14 %
12 12
10 10
g 8 '.';" 8
E 6 5 5
4 4
2 2
93 - 0.2 03 B0 -035 -0.30 —D—ZS_ -0.20 -0.15 -0.10 -0.05 -0.00 ;.05 0.10
Ficure 1. Densities of OLS-VAR and RBFM-VAR estimates for Case A
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FIGURE 2. Densities of OLS-VAR and RBFM-VAR estimates for Case B
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1711, T =150 112, T = 150

frequency
w

frequency
© - M e a0 B N @ ©

frequency
trequency
! -~ = > [ ~ @ w

(X} X -0.3 ~0.2

0.2

Ficure 3. Densities of OLS-VAR and RBFM-VAR estimates for Case C

tegrations of the forn€I(1,1), Cl(2,2), andCI(2,1) and for multicointegration
in the VAR systemsThe asymptotic theory established in the paper shows
howevey that the RBFM-VAR estimator is consistent and that its leading term
has mixed normal limit distributianThis is achieved without the specification
of the nonstationary characteristics of the regressors and the precise configura-
tions of cointegration space

The mixed normal limit distributions of the RBFM-VAR estimates simplify
statistical inference in cointegraté@?)-VAR’s. Wald tests that are based on
the RBFM-VAR estimator are shown to have a limit theory that involves a lin-
ear combination of independent chi-square varialé® limit distribution is
bounded above by the usual chi-square distribution with degrees of freedom
equal to the number of restrictions being tesfelus the conventional critical
values can be used to construct asymptotically vdlid conservativetests in
our RBFM-VAR regressionsThis has a direct application for Granger-causality
tests in nonstationary VAR models

NOTES

1. Note that the long run varianc@ is singular To see thiswe may write as in Johansen
(1995, uy; = C(L)g for an (my X n) infinite matrix lag polynomialC(L). Then it follows that
B, = C(1)B;. Also note thaiBs = (I,,,,0)B,, which can be seen easily from the definitions given in
(4) and(5).
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2. Our results here are not comparable to the limit theories in Johd®96@) because he uses
a different parameterization there
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APPENDIX: PROOFS

Proof of Theorem 1. As shown in Remarkd) following Theorem 1the proces$
defined in(11) that we use as the basis for our correction terms has the same represen-
tation as the residual employed in the RBFM-OLS proced{8ee Chang and Phillips
1995 equation(13), p. 1044. Moreover we admit the same class of kernel functions
o(-) used in forming long run covariance matrix estimates and characterize rates of
expansion of the bandwidth paramelter= K(T) by using the expansion rate symtsal
in the same manner as in Chang and Phillip895. Therefore the asymptotic results
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established in that reference are directly applicable to our present analysis for explicitly
characterizing the limit behaviors of the kernel estimates of the long run and one-sided
long run covariance matrices used in the construction of the RBFM-VAR correction terms
given in(13).

We begin by rewriting the RBFM-VAR estimatér™ defined in(12) as

Fr=(Y'ZYW-0.,0(V'W-—TA, W) (X'X)*

= (FX’X + E"(Z,W) — (0, 04, Q5 (V'W — TA ) (X'X) 71
becauseX = (Z,W). Then the estimation error iR~ follows as
Fr*—F=(E'Z E'W— Q4051 (V'W—TA; 1) (X' X)7Y
which can be written more explicitly as
(E'Z, E'W— O, H (HOQ; H)"TH(V'W — TA, ) G/ (GX'XG')1G

N

= (E'Z, E'WH' — Q4 053 (i W = TA; 1) H' ) (GX'XG')1G

Ondn

=[E'X; = (0, Qsﬁhﬂfl (U, — TA{;hAul))‘

dndn

X E'Xp— Qg5 Q55 (Vi Xo — TRy 00 )] (GX'XG')1G (A1)

Ondn

becauseV; = U4, (Z,W;) = X4, andW, = X, by the definitions(5) and (7). We usedy,
and V4, to denote theH-transformed andV. We haveXG' = (X4, X,) and

XIX, XX\t
(GX'XG")™1 =

XXy XpXp

B (X1Qp Xyt —(X{ X)X Xp (X5 Qr Xp)
—(XpXp) T XE X1 (X1 Qp Xg) (X5Q1 Xp) ™
(A.2)
with Q =1 — X, (X/ X;)"*X/ for i = 1,b.
It follows from Lemma 3d) and(e) of Chang and Phillip$1995 that

Qg5 = O +0,(1) and O, =0, +0,(1) (A.3)

for the bandwidth parameter expansion rate (0,3), and thus we can use),, and

N svp

Q,,., in lieu of O, andQ;, , without affecting our later asymptotic analys¥ée also

UhUn

have from Lemma &) and(d) of Chang and Phillip$1995 that

T V20, 0,1 (ViU; = TAg au) = Op(TY2K72) + O,(KT ¥2) + O, (K1) (A4)

EVUR " "UhUh
and
Qe 0, (Vi X — TAg 05, ) D7t

= Qup Qi Nopr + Op(K5/2T73/2) + Op(K3/2T71)’ (A.5)
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whereNppT —4 fc;Lde By. Notice that we use the Moore—Penrose inverse in the preced-
ing discussionbecausd),, is singular in general as a result of the correlation between
B, andB; discussed followind7).

Part (a). Notice that

GG! = 0 I 0 _ In(pr) 0 _ In(p*2>+m1
~\o H/\o HY) \ o HHY 0

becaus¢iH™ = (1, ,0)’, and thusGG* picks up the first column ofGX'XG’)~*, which

is given in(A.2). Then it follows from(A.1)—(A.5) that

VT(F* - F)G*
=NT(E'Z, E'W— Qg 051 (VeW — TA, 1)) G (GX'XG') 1GG?

00,50 (Vi Us = A5, 00,)) (X1 Qp Xg) 7

= VT(E"Xp = Oy 003 (Vi Xp = TR, 06)) (X6 X)X X (X5 Qp Xp) 2

= \/_(E Xl - (O sth

= \/T(TilE/xl - (07 ﬁsvh Uhvh(T th Ul uhAul)))(T 1X1Qb Xl)

- T Y2(E'X,Drt - O L (Vi Xp = TAg n,) D7)

evp vhvh
X (Dr(X5Xy) *Dr) (Dr P Xp X)) (T X1 Qp Xq)
= T V2E'X(T X X)) + Oy(TY2K 72) + O, (KT Y2) + O,(K ).

The error terms appearing in the preceding expression are of op@Brfor a band-
width expansion rat& € (%,3). Then it follows immediately fron{8) that

VT(F" = F)G! 54 N(0,3,, ® 3:a4),

where3, 1 = EXy; Xi;, Which is shown to be positive definite in Lemmaéiil) of Toda
and Phillips(1993, and this completes the praof

Part (b). Similarly, it follows from GGP = (0, Im,)” and(A.1)—(A.5) that
(F* —F)G"D;
= (E'Z, E'W, — Oy, 5% (W, — TA; 4,)) (G'X'XG) " 1G'G Dy

E0n = “Ondn

—(T %y = (0, €,,, 0,3 (T 3V Uy = By ng (T 71X %)

UhUn
X X1 Xp D' Dr (X5 Q1 X,) Dy
Qe 002, (Vi X = TAy 0y, )) D7 1D (X5 Q1 X)) 1Dy

= (NebT - stQEbNbbT) DT(Xl;Ql Xb)ilDT + Op(KS/ZTis/z) + Op(K3/2T71)9

+ (E'%p —

whereNepr — 0,508 Nopr —a Jo d(B, — Q505,85 Bf = [ d(B, — 0,053 B,) B},
All the error terms in the equation aog(1) for k € (0,2, and therefore the stated fol-
lows fork € (0,3) N (0,2) = (0,3).
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Proof of Theorem 2. From

Ry O O
I 0\ /Ry 0 0 s o
GR, = = A6
2700 HJ\ 0 |(HISy, H"S,) N (A.6)
0 0 S
we have
Ri(F " = F)R, = Ry(F" —F)G 'GR,
R,y O

= <R1(<i>+ —®,A] - A1)< ) ‘ Ry(Ay — Ab)SAb>‘ (A7)

0 Su
Define Dr = diag(lnp-2)+mys VT Imys T¥2lm,). Then it follows from(A.6) that
DR, T(X'X) IR, Dy
=D;RyG/(G')IT(X'X)"1G1GR, Dy
= R,G'DVT(GX'XG' ) 'WTD; GR,
VT 0\ (XiXE XX\ NT 0
=R,G’ GR,
0 Dr/\XpX: XX, 0 Dy

Ré’l’ 0 0 Exll 0 -1 R2<p O

0
Sq| 0 Sk 1__ 0 Sa
0 B, By,
0 Sho 0 0 Sab
Ry O R,, O
S 0
B 0 Su 0 Su . Q, 0
B 1 \-1 \o Q,)
0 S/m( fo By Bé) Sab
(A.8)
It follows also from(A.7) and the results in Theorem 1 that
ved VTR(F* — F)R,Dy)
. Ry O .
=vee| NTR(F —F)( o o |, Ru(Fy —Fu)DrSu | 24 (2, 5),
Al
where
Z,=NO,RX, R ®Q;) and Z,=MN(O,R Q.. R ® Qp) (A.9)

using the notation®; and Q,, defined in(A.8).
We now consider the asymptotics for the Wald statistic when the restriction nkatrix
has the formR = R; ® Rj. The Wald statistidl in this case is obtained from the
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Wald statistic given in20) simply by replacingR andr by R; ® R} and ve¢R;FR,),
respectivelynamely
T(vecRy(F* = F)Ry) (R12,,R) ™ ® (RET(X'X)'R,) *)vecRy(F " — F)R,

= tr(Re2,. R)VTR(F " ~ F)R,Dr

X (Dr ReT(X'X) 'R, Dy) *(NTRy(F " — F)R, Dr)").

Then it follows directly from(A.8) and(A.9) that
WE =g tr(Ry 3, R) ™2, 0712, + tr(Ry 3, R 2, Q5 12 =t (W, + W), (A.10)
Define Z; = (R;3,.R})™Y22, 97%2, and use this to writ¢V, as
W, = tr(21 2) = (ved 2)) ved Z3) = X3 qp+au) (A.11)

because ve(Z;) = (R;2,.R) ™ ® Q1 ?)ved Z1) = N(0, |4 (g, -+ qun))-

To analyze the second terv, of (A.10), we need to deal with the potential singular-
ity of the variance matrix o, defined in(A.9) that arises from the singularity of,..».
To do sQwe use dq; X ;) orthogonal matriX = (K, K,) whose component matrices
K1 andK; are of ranksy; andq; — gy, respectivelyWe may writeR, Q. ., R] = K; AK{,
whereA is agi-dimensional diagonal matriDefine M = (K;AY2 K,) and use its in-
verseM 1 = (K;A™Y2 K,)' to transformz, as Z;; = M ™12, Oy /2, where

lgr O
ved Zy) = (M* ® Q5 "2)ved Z,) = MN <0< . 0> ® I%>-

Define M, = (K;AY20). We may then writé/V, as

Wy = tr(M'(Ry 3, R) MZEZ5) = tr(M{(R, 3, R) M, Z521)

and letC be ag;-dimensional orthogonal matrix such thatC = I, , for which
C'MI(R;3,,R;) ™M, C = D = diag(d,,...,dy,),

where (g; — g;7) number ofd;’s are zero Note that thed;’s are eigenvalues of
(Rng&ZRi)l/z(RlEss Ri)_l(Rlﬂse~2Ri)l/27 becaustl‘Q’G&ZRi)l/z = M*K, We fl_
nally define Z; = C'Z;. Then it follows that

A1 Yab A1
Wo=(DZ327) = 34 3 (¥ = 3 dixd, (i), (A.12)
i=1 j=1 i=1

where ya, (i) ~i.id. (x2,), fori =1,...,q;, because veE;) = (C’' ® |)ved Z).

Aab

The stated result now follows immediately fra.10)—(A.12). |



